首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Groundwater chemistry in a coastal region (Kunsan, Korea) having complex contaminant sources was investigated. Water analysis data for 197 groundwater samples collected from the uniformly distributed sixty-six wells were used. Chemical analysis results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes. Due to the complexity of groundwater chemistry, the samples were classified into four groups based on Cl and NO3 concentrations and the processes controlling water chemistry were evaluated based on the reaction stoichiometry. The results explained the importance of mineral weathering, anthropogenic activities (nitrification and oxidation of organic matters), and Cl-salt inputs (seawater, deicer, NaCl, etc.) on groundwater chemistry. It was revealed that mineral dissolution is the major process controlling the water chemistry of the low Cl and NO3 group (Group 1). Groundwaters high in NO3 (Groups 2 and 4) are acidic in nature, and their chemistry is largely influenced by nitrification, oxidation of organic matters and mineral dissolution. In the case of chloride rich waters (Group 3), groundwater chemistry is highly influenced by mineral weathering and seawater intrusion associated with cation-exchange reactions.  相似文献   

2.
Evaluation of major ion chemistry and solute acquisition process controlling water chemical composition were studied by collecting a total of fifty-one groundwater samples in shallow (<25 m) and deep aquifer (>25 m) in the Varanasi area. Hydrochemical facies, Mg-HCO3 dominated in the largest part of shallow groundwater followed by Na-HCO3 and Ca-HCO3 whereas Ca-HCO3 is dominated in deep groundwater followed by Mg-HCO3 and Na-HCO3. High As concentration (>50 μg/l) is found in some of the villages situated in northeastern parts (i.e. adjacent to the concave part of the meandering Ganga river) of the Varanasi area. Arsenic contamination is confined mostly in tube wells (hand pump) within the Holocene newer alluvium deposits, whereas older alluvial aquifers are having arsenic free groundwater. Geochemical modeling using WATEQ4F enabled prediction of saturation state of minerals and indicated dissolution and precipitation reactions occurring in groundwater. Majority of shallow and deep groundwater samples of the study area are oversaturated with carbonate bearing minerals and under-saturated with respect to sulfur and amorphous silica bearing minerals. Sluggish hydraulic conductivity in shallow aquifer results in higher mineralization of groundwater than in deep aquifer. But the major processes in deep aquifer are leakage of shallow aquifer followed by dominant ion-exchange and weathering of silicate minerals.  相似文献   

3.
Patchy occurrences of elevated As are often encountered in groundwater from the shallow aquifers (<50 m) of the Bengal Delta Plain (BDP). A clear understanding of various biogeochemical processes, responsible for As mobilization, is very important to explain this patchy occurrence and thus to mitigate the problem. The present study deals with the periodical monitoring of groundwater quality of five nested piezometeric wells between December 2008 and July 2009 to investigate the temporal changes in groundwater chemistry vis-a-vis the prevalent redox processes in the aquifer. Geochemical modeling has been carried out to identify key phases present in groundwater. A correlation study among different aqueous redox parameters has also been performed to evaluate prevailing redox processes in the aquifer. The long term monitoring of hydrochemical parameters in the multilevel wells together with hydrogeochemical equilibrium modeling has shown more subtle differences in the geochemical environment of the aquifer, which control the occurrence of high dissolved As in BDP groundwater. The groundwater is generally of Ca-HCO3 type. The dissolved As concentration in groundwater exceeded both WHO and National drinking water standard (Bureau of Indian Standards; BIS, 10 μg L−1) throughout the sampling period. The speciation of As and Fe indicate persistent reducing conditions within the aquifer [As(III): 87-97% of AsT and Fe(II): 76-96% of FeT]. The concentration of major aqueous solutes is relatively high in the shallow aquifer (wells A and B) and gradually decreases with increasing depth in most cases. The calculation of SI indicates that groundwater in the shallow aquifer is also relatively more saturated with carbonate minerals. This suggests that carbonate mineral dissolution is possibly influencing the groundwater chemistry and thereby controlling the mobilization of As in the monitored shallow aquifer. Hydrogeochemical investigation further suggests that Fe and/or Mn oxyhydroxide reduction is the principal process of As release in groundwater from deeper screened piezometric wells. The positive correlations of U and V with As, Fe and Mn indicate redox processes responsible for mobilization of As in the deeper screened piezometric wells are possibly microbially mediated. Thus, the study advocates that mobilization of As is depth dependent and concentrations of As in groundwater depends on single/combined release mechanisms.  相似文献   

4.
The alluvial aquifer of the Guadalquivir River comprises shallow Quaternary deposits located in the central-eastern part of the Province of Jaén in southern Spain, where groundwater resources are used mainly for crop irrigation in an important agricultural area. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater and river water samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Mg–Ca–HCO3, Ca–Mg–SO4–HCO3–Cl and Na–Ca–Mg–Cl–SO4) were identified. Further interpretation, using R-mode principal components analysis (PCA) conducted with 13 hydrochemical variables, identified two principal components which explain ⅔ of the variance in the original data. In combination with the hydrochemical interpretation, mineralogical analyses of the aquifer sediment together with inverse geochemical modelling using NETPATH showed that dedolomitization (calcite precipitation and dolomite dissolution driven by gypsum dissolution) is the principal hydrochemical process controlling the regional groundwater chemistry. Other processes such as silicate weathering, ion exchange, mixing between river water and groundwater, and agricultural practices also affect the groundwater chemistry.  相似文献   

5.
Groundwater qualities of coastal aquifers in the Ottapidaram taluk of Thoothukudi district, Tamil Nadu have been extensively monitored in post monsoon seasons in 2014 to assess its suitability in relation to domestic and drinking uses in four regions (N-S-EW). 34 groundwater samples were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), Total dissolved solid (TDS), Na, K, Ca, Mg, Cl, HCO3, CO3, SO4, NO3, PO4. Most of these parameters fall under not permissible limits. The western part of the study area is highly polluted from K, Cl, HCO3 due to industrial/agriculture activity. The southern part is less polluted compared to other region. Hydrogeochemical processes controlling the water chemistry (Gibbs) indicates that most of groundwater samples fall at rock-weathering supremacy zone. Geochemical processes and temporal variation in the groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals. Major cation and anion ionic interaction indicate that weathering reactions have an inconsequential role in the hydrochemical processes of the shallow groundwater system. As a result of the hydrogeochemical analysis, seawater intrusion, aquifer rock weathering, sewer leakage are the overriding factors that determine the major ionic composition. The appropriate management plan is necessary to preserve precious groundwater resources.  相似文献   

6.
In this study, the chemical and Sr isotopic compositions of shallow groundwater and rainwater in the Ordos Desert Plateau, North China, and river water from the nearby Yellow River, are investigated to determine the dissolved Sr source and water–rock interactions, and quantify the relative Sr contribution from each end-member. Three groundwater systems have been identified, namely, GWS-1, GWS-2 and GWS-3 according to the watershed distribution in the Ordos Desert Plateau. Ca2+ and Mg2+ are the most dominant cations in GWS-1, while Na+ is dominant in GWS-3. In addition, there is more SO42− and less Cl in GWS-1 than in GWS-3. The shallow groundwater in GWS-2 seems to be geochemically between that in GWS-1 and GWS-3. The 87Sr/86Sr ratios of the shallow groundwater are high in GWS-1 and GWS-2 and are low in GWS-3. By geochemically comparing the nearby Yellow River, local precipitation and deep groundwater, the shallow groundwater is recharged only by local precipitation. The ionic and isotopic ratios indicate that carbonate dissolution is an important process controlling the chemistry of the shallow groundwater. The intensity of the water–rock interactions varies among the three groundwater systems and even within each groundwater system. Three end-members controlling the groundwater chemistry are isotopically identified: (1) precipitation infiltration, (2) carbonate dissolution and (3) silicate weathering. The relative Sr contributions of the three end-members show that precipitation infiltration and carbonate dissolution are the primary sources of the shallow groundwater Sr in GWS-3 whereas only carbonate dissolution is responsible for the shallow groundwater Sr in GWS-1 and GWS-2. Silicate weathering seems insignificant towards the shallow groundwater's chemistry in the Ordos Desert Plateau. This study is helpful for understanding groundwater chemistry and managing water resources.  相似文献   

7.
《Applied Geochemistry》2003,18(7):1043-1063
The Memphis aquifer in southwestern Tennessee is confined to a semi-confined unconsolidated sand aquifer and is the primary municipal water source in the Memphis metropolitan area. Past studies have identified regions in the metropolitan area in which the overlying upper Claiborne confining unit lacks significant clay and provides a hydraulic connection between the shallow aquifer and the Memphis aquifer. In this study, major solute chemistry, 3H, and 3H/3He groundwater dating are used to investigate the extent and chemical effects of leakage through the confining unit to the Memphis aquifer in the vicinity of a municipal well field. The 3H/3He dates and geochemical modeling of the chemical data are used to constrain mixing fractions and the timing of modern recharge. Tritium activities of as much as 2.8 TU are observed in shallow production wells, but deeper production wells have 3H activities that approach the detection limit. Trends in water chemistry indicate vertical mixing in the aquifer of shallow Na–SO4–Cl-rich water and deeper Ca–Mg–HCO3-rich water. Water chemistry does not vary consistently with seasonal pumping, but 3H activity generally decreases during low use periods. Stable O and H isotopes show little variation and are not useful groundwater tracers for this study. The 3H-bearing, Na–SO4–Cl-rich water is interpreted to reflect recharge of modern water through the upper Claiborne confining unit. The 3H/3He dates from 5 production wells indicate modern recharge, that infiltrated 15–20 a ago, is present in the shallow production wells. Geologic data and hydrologic boundary conditions suggest that the most likely source for continued leakage is a nearby stream, Nonconnah Creek. Geochemical reaction modeling using the NETPATH computer code suggests that proportions of shallow aquifer water leaking into the Memphis aquifer range from 6 to 32%. The 3H/3He dating and NETPATH modeling results correlate well, suggesting that these complementary analytical tools provide an effective means to evaluate proportions of modern water leaking into semi-confined aquifers. These results also indicate a need to carefully consider connections between surface water and semi-confined groundwater resources in wellhead protection programs.  相似文献   

8.

Tamborine Mountain, Queensland (Australia), is a prime example of a basalt fractured-rock aquifer. Yet very little is known about the hydrochemistry of this groundwater system. Both analytical (major ions and stable isotopes) and multivariate (hierarchical cluster analysis, principal component analysis and factor analysis) analyses were used in this study to investigate the factors that interact within this aquifer system, in order to determine groundwater hydrogeochemistry. A new approach was applied to the data by classifying hydrographs by water type to clearly identify differing aquifer zones. Three distinct groundwater chemistry types were identified, and they were differentiated by variations in depth. Shallow bores were dominated by Na–Cl waters, deep bores were dominated by Na–HCO3 and Ca–HCO3 waters, and the two deepest bores were dominated by mixed water types. The evaluation of hydrogeochemical data has determined that both mineral weathering processes and groundwater/surface-water interaction had a strong influence on the hydrogeochemistry. Seasonal effects were minimal in the study area based on physicochemical parameters and ion chemistry. However, stable isotopic data show temporal trends. Increased rainfall events during the wet season produced a depletion in δ18O and increased d-excess values. The opposite is found during the dry season as a result of higher evaporation rates that are not hindered by intense rainfall events.

  相似文献   

9.
Groundwater arsenic (As) concentrations above 10 μg/L (World Health Organization; WHO standard) are frequently found in the Titas Upazila in Bangladesh. This paper evaluates the groundwater chemistry and the mechanisms of As release acting in an underground aquifer in the middle-northeast part of the Titas Upazila in Bangladesh. Previous measurements and analyses of 43 groundwater samples from the region of interest (ROI) are used. Investigation is based on major ions and important trace elements, including total As and Fe in groundwater samples from shallow (8–36 m below ground level: mbgl) and deep (85–295 mbgl) tube wells in the aforementioned ROI. Principal hydrochemical facies are Ca–HCO3, with circumneutral pH. The different redox-sensitive constituents (e.g., As, Fe, Mn, NH4, and SO4) indicate overlapping redox zones, leading to differences regarding the redox equilibrium. Multivariate statistical analysis (factor analysis) was applied to reduce 20 chemical variables to four factors but still explain 81% of the total variance. The component loadings give hints as to the natural processes in the shallow aquifers, in which organic matter is a key reactant. The observed chemistry of As, Fe, and Mn can be explained by simultaneous equilibrium between Fe-oxide and SO4 reduction and an equilibrium of rhodochrosite precipitation/dissolution. A correlation test indicates the likeliness of As release by the reductive dissolution of Fe-oxides driven by the degradation of sediments organic matter. Other mechanisms could play a role in As release, albeit to a lesser extent. Reactive transport modeling using PHREEQC reproduced the observed chemistry evolution using simultaneous equilibrium between Fe-oxide and SO4 reduction and the equilibrium of rhodochrosite dissolution/precipitation alongside organic matter oxidation.  相似文献   

10.
The alluvial aquifer of the Ghatprabha River comprises shallow tertiary sediment deposits underlain by peninsular gneissic complex of Archean age, located in the central–eastern part of the Karnataka in southern India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Ca–Mg–Cl, Ca–Mg–HCO3, and Na–SO4) were identified. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The results of factor analysis indicated the total variance explained by the extracted factor 79.9% and 87.1% for both pre- and post-monsoon, respectively. And other processes such as silicate weathering, ion exchange, and local anthropogenic activities affect the groundwater chemistry.  相似文献   

11.
In India groundwater is an important source for domestic and agricultural purposes. Management of this resource is very important to meet the increasing demand of water. In this study, the ionic concentrations of groundwater from Mulakalacheruvu area, Chittoor district, Andhra Pradesh, South India have been calculated during May 2014 and the major ionic concentrations have been analyzed by hydrochemcial and statistical methods in order to trace the main processes controlling the groundwater chemistry. The results have suggested that these groundwater samples belong to Na-HCO3 (18 samples), Ca-HCO3 (16 samples) and Mg-HCO3 (6 samples) types. The hydrochemical methods suggest that the rocks in the aquifer system are sources of the major ions in the groundwater, and the silicate is the main mineral phase. Three sources viz. mafic silicate, felsic silicates and easily soluble minerals have been identified as responsible for the chemical variations of the groundwater. Further, the source contributions of silicate minerals for the groundwater hydrochemistry have been analyzed. These results suggest that the hydrochemistry of the groundwater in the south-eastern area is mainly controlled by weathering of felsic silicate (61-100%), whereas the north-western area is principally contributed by mafic silicate minerals (48-100%).  相似文献   

12.
The Grombalia coastal aquifer, situated in Northeastern Tunisia, is a water source for public, agricultural, and industrial supplies in the region. The overexploitation of this aquifer, since 1959, and the agriculture activities led to the degradation, by places, of the water quality. The present study implemented graphical, modeling, and multivariate statistical tools to investigate natural and anthropogenic processes controlling Grombalia groundwater mineralization and water quality for promoting sustainable development. To attempt this goal, groundwater was collected from 33 observation wells in January 2004, and samples were analyzed for 10 physicochemical parameters (temperature, pH, salinity, Na+, Ca2+, K+, Mg2+, Cl?, HCO3?, and SO 4 2? ). Hydrochemical facies using Piper diagram indicates a predominance of a mixed facies, of the Na-Cl-HCO3 type, or Na-Ca-Cl-SO4 type, and, with less expansion, Na Cl type. The main factors controlling Grombalia groundwater mineralization seem to be mineral dissolution of highly soluble salts especially, the halite dissolution existing in the surface salty deposits and, with less importance, the ion exchange and reverse ion exchange process with clay minerals existing in the aquifer. The comparison of the major ions of the Grombalia groundwater, with the World Health Organization norms of potability (WHO 2004), reveals that these waters cannot be used for human consumption without any treatment. Most waters of the Grombalia aquifer, with a relatively high salinity, are not suitable for irrigation, in ordinary conditions. Nevertheless, they can be used for permeable soils, with an adequate drainage and applying an excess of leaching water.  相似文献   

13.
In 1986, carbon dioxide gas exploded from Lake Nyos and killed about 1,800 people. After that disaster, various administrative and research activities have been conducted to mitigate subsequent disasters. However, none of those endeavors have characterized the groundwater chemistry to identify hydrogeochemical processes that control the water chemistry, and the quality of the water for domestic and agricultural uses that support the lives of un-official resettlers around Lake Nyos. Conventional hydrochemical techniques coupled with statistical and graphical analysis were therefore employed to establish the baseline hydrochemical conditions, assess processes controlling solutes distribution in shallow groundwater in the Lake Nyos catchment and explore its usability. Groundwater samples were analyzed for their physical and chemical properties. The wide ranges of electrical conductivity and total dissolved solid values reveal the heterogeneous distribution of groundwater within the watershed. The relative abundance of major dissolved species was Ca > Mg > Na > K for cations and HCO3 >>> Cl > SO4 > NO3 for anions. Piper diagram classified almost all water samples into mixed CaMg–HCO3 water type. Major ion geochemistry reveals that, in addition to silicates weathering (water–rock interaction), ion exchange processes regulate the groundwater chemistry. Principal component analysis supports the occurrence of water rock interaction. Hierarchical cluster analysis showed that the chemistry of groundwater in the study area is controlled by three main factors, and suggests no hydraulic connectivity between deep lake water and groundwater in the catchment. The quality assessment of the groundwater showed that groundwater parameters are within the acceptable limit of the World Health Organization and Nigeria guidelines for drinking and domestic uses, and water found to be good for irrigation.  相似文献   

14.
An approach is presented to investigate the regional evolution of groundwater in the basin of the Amacuzac River in Central Mexico. The approach is based on groundwater flow cross-sectional modeling in combination with major ion chemistry and geochemical modeling, complemented with principal component and cluster analyses. The hydrogeologic units composing the basin, which combine aquifers and aquitards both in granular, fractured and karstic rocks, were represented in sections parallel to the regional groundwater flow. Steady-state cross-section numerical simulations aided in the conceptualization of the groundwater flow system through the basin and permitted estimation of bulk hydraulic conductivity values, recharge rates and residence times. Forty-five water locations (springs, groundwater wells and rivers) were sampled throughout the basin for chemical analysis of major ions. The modeled gravity-driven groundwater flow system satisfactorily reproduced field observations, whereas the main geochemical processes of groundwater in the basin are associated to the order and reactions in which the igneous and sedimentary rocks are encountered along the groundwater flow. Recharge water in the volcanic and volcano-sedimentary aquifers increases the concentration of HCO3 , Mg2+ and Ca2+ from dissolution of plagioclase and olivine. Deeper groundwater flow encounters carbonate rocks, under closed CO2 conditions, and dissolves calcite and dolomite. When groundwater encounters gypsum lenses in the shallow Balsas Group or the deeper Huitzuco anhydrite, gypsum dissolution produces proportional increased concentration of Ca2+ and SO4 2–; two samples reflected the influence of hydrothermal fluids and probably halite dissolution. These geochemical trends are consistent with the principal component and cluster analyses.  相似文献   

15.
Detailed hydrogeochemical investigation has provided new information concerning the major factors and mechanisms controlling the groundwater chemistry of Chougafiya basin. The hydrogeochemical characteristics of groundwaters comprise three main types: Cl–SO4–Ca, Cl–SO4–Na and Cl–Na. Hydrochemical characteristics based on the bivariate diagrams of major (Cl?, SO4 2?, NO3 ?, HCO3 ?, Na+, Mg2+, K+ and Ca2+) and some trace (Br? and Sr2+) ions, mineral saturation indices and hierarchical cluster analysis indicate different origins of groundwater mineralization. The water–rock interaction (dissolution of evaporitic minerals), followed by cation exchange reactions with clay minerals, constitute the main processes that control groundwater salinization. However, the chemical composition of brackish groundwater in the central and southern parts of the study area is influenced by a mixing process with Sabkhas salt groundwater. The mixing proportions inferred from chloride mass balance prove that the contribution of Sabkhas groundwater to Quaternary aquifer ranges between 2.7 and 9.1 %. These intrusion rates reflect the progress of the saltwater–freshwater interface, which is mainly controlled by the piezometric level variation and the distance to the Sabkhas.  相似文献   

16.
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ~300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2? reduction to methanogenesis. In particular, decreasing SO4 2? and increasing δ34S of SO4 2? along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2? reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.  相似文献   

17.
Groundwater is crucial for multiple uses over the world, especially in arid and semiarid regions. However, human activities significantly decreased groundwater quality. In this study, the spatiotemporal variation of groundwater quality was evaluated in an arid area where long-term paper wastewater irrigation has been implemented. For this study, seven wells were regularly monitored for physicochemical parameters over a period of 1 year. Statistical and graphical approaches were applied to interpret the spatiotemporal variation of groundwater quality parameters in the wastewater irrigation zone. Correlation analysis was also carried out to reveal the sources of some major ions. The results indicate that the groundwater type in the study area is dominated by the Cl–Na, followed by the HCO3–Na, the HCO3–Ca·Mg, and the SO4·Cl–Ca·Mg types. Groundwater in the area is significantly contaminated locally with fluoride, nitrite and ammonia, and the chemical oxygen demand levels were increased in some groundwater monitoring wells. Most contaminants showed an increasing trend from the Yellow River water irrigation zone toward the wastewater irrigation zone. Rock weathering, mineral dissolution, and cation exchange are important processes controlling groundwater quality, but human activities, such as wastewater irrigation, play an undeniable role in affecting groundwater quality in this area. The results of this study contribute to the understanding of the formation and circulation of groundwater under human activities and provide a scientific basis for regional water quality evaluation, water quality improvement, and protection.  相似文献   

18.
19.
The study of groundwater hydrogeochemistry of a hard rock aquifer system in Thoothukudi district has resulted in a large geochemical data set. A total of 100 water samples representing various lithologies like Hornblende Biotite Gneiss, Alluvium Marine, alluvium Fluvial, Quartzite, Charnockite, Granite and Sandstone were collected for two different seasons and analyzed for major ions like Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, PO4 ?, F? and H4SiO4. Statistical analysis of the data has been attempted to unravel the hidden relationship between ions. Correlation analyses and factor analyses were applied to classify the groundwater samples and to identify the geochemical processes controlling groundwater geochemistry. Factor analysis indicates that sea water intrusion followed by leaching of secondary salts, weathering and anthropogenic impacts are the dominant factors controlling hydrogeochemistry of groundwater in the study area. Factor score overlay indicate major active hydrogeochemical regimes are spread throughout the Eastern, Northwestern and Southeastern parts of the study area. The dominant ions controlling the groundwater chemistry irrespective of season are Cl?, Na+, Mg2+, Ca2+, SO4 2?, K+ and NO3 ?. An attempt has also been made to note the seasonal variation of the factor representations in the study area. This study also illustrates the usefulness of statistical analysis to improve the understanding of groundwater systems and estimates of the extent of salinity/salt water intrusion.  相似文献   

20.
Abstraction of groundwater resources is increasing over the years to meet its ever-increasing demand for industrial, agricultural and domestic purposes throughout the world. The scenario is even worse in the east flowing rivers of the Western Ghats, where the demand of water is high under changing climatic conditions. Such situation may affect the groundwater resources of the river basin on a long run. The aim of the present study is to characterize the geochemistry of groundwater in Tamiraparani sub-basin through geochemical modeling and deduce the ionic interactions with the aid of geostatistical and multivariate statistical techniques. A total of 40 groundwater samples from shallow aquifers were collected randomly throughout the sub-basin for assessing its physicochemical parameters, which include physical properties of the water, major ions and nutrients. Two major hydrogeochemical facies were identified such as mixed Ca-Mg-Cl and Ca-HCO3 groups. The nutrients derived from agricultural runoff, urban discharge and organic decomposition alters the nutrient level in the groundwater. The dissolution/precipitation of minerals such as calcite and dolomite controls the chemical constituents of the groundwater. The multivariate statistical analysis indicates that natural weathering of source rocks is the main contributors of ions in the groundwater followed by anthropogenic activities such as agricultural practices and urbanization. The insights obtained from this study can be helpful for sustainable groundwater management and long-term monitoring studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号