首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical Solution for Testing Debris Avalanche Numerical Models   总被引:4,自引:0,他引:4  
—We present here the analytical solution of a one-dimensional dam-break problem over inclined planes. This solution is used to test a numerical model developed for debris avalanches. We consider a dam with infinite length in one direction where material is released from rest at the initial instant. We solve analytically and numerically the depth-averaged long-wave equations derived in a topography-linked coordinate system. The numerical and analytical solutions provide for a Coulomb-type friction law at the base of the flow. The analytical solution is obtained by using the method of characteristics and describes the flow over a constant slope, provided that the angle is higher than the friction angle. The numerical model utilizes a finite-difference method based on a Godunov-type scheme. Comparison between analytical and numerical results illustrates the remarkable stability and precision of the numerical method as well as its ability to deal with strong discontinuities.  相似文献   

2.
This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation method (HPM) and an ancient Chinese method called the max-min approach are presented to obtain an approximate solution. The major concern is to assess the accuracy of these approximate methods in predicting the system response within a certain range of system parameters by examining their ability to establish an actual (numerical) solution. Therefore, the analytical results are compared with the numerical results to illustrate the effectiveness and convenience of the proposed methods.  相似文献   

3.
Under certain conditions the concentration of a substance moving in a stochastic flow field is described by the stochastic convection equation. A numerical method yielding the mean solution and variance of the two-dimensional problem is described here. First, the differential operator is replaced by a discrete linear operator based on finite differences. The resulting system of stochastic equations is then replaced by a system of equations whose solution is the mean concentration. The variance of the concentration can then be calculated. In addition, and example is given for which an approximate analytical solution and its variance is known. The numerical method is applied to the example and results compared to the approximate analytical solution and variance.  相似文献   

4.
In this paper, the numerical errors associated with the finite difference solutions of two-dimensional advection–dispersion equation with linear sorption are obtained from a Taylor analysis and are removed from numerical solution. The error expressions are based on a general form of the corresponding difference equation. The variation of these numerical truncation errors is presented as a function of Peclet and Courant numbers in X and Y direction, a Sink/Source dimensionless number and new form of Peclet and Courant numbers in X–Y plane. It is shown that the Crank–Nicolson method is the most accurate scheme based on the truncation error analysis. The effects of these truncation errors on the numerical solution of a two-dimensional advection–dispersion equation with a first-order reaction or degradation are demonstrated by comparison with an analytical solution for predicting contaminant plume distribution in uniform flow field. Considering computational efficiency, an alternating direction implicit method is used for the numerical solution of governing equation. The results show that removing these errors improves numerical result and reduces differences between numerical and analytical solution.  相似文献   

5.
ABSTRACT

Forward–backward solute dispersion with an intermediate point source in one-dimensional semi-infinite homogeneous porous media is studied in this paper. Solute transport under sorption conditions, first-order decay and zero-order production terms are included. The first type of boundary condition is taken as a constant point source at an intermediate point from where forward and backward solute dispersion is examined. The Laplace transform method is adopted to solve the governing equation analytically. All the analytical results are obtained in graphical form to investigate the forward–backward solute transport in porous media for various hydrological input data. The graphical nature of the analytical solution is compared with numerical data taken from existing literature and similar results are obtained. Also, numerical solution of the governing equation is obtained by the Crank-Nicolson finite difference scheme and validated with the analytical solution, which demonstrates good agreement between them. Accuracy of the solution is also observed by using RMSE.  相似文献   

6.
Soil vapour extraction (SVE) is a common remediation technique for cleaning up unsaturated soils contaminated by volatile organic compounds (VOCs). Analytical solutions, which result from simple mathematical models, can allow the fast approximation of the time‐dependent effluent concentration and the gaining of insight into the processes that take place during soil remediation. Deriving the analytical solutions to advection–dispersion equations that simultaneously take into account the mechanical dispersion and molecular diffusion is very difficult because of the variable dependence of governing equations' coefficients. In this study, we first present two simplified analytical solutions that only consider mechanical dispersion or molecular diffusion. The two developed analytical solutions are compared with the numerical solution that simultaneously considers both mechanical dispersion and molecular diffusion to examine the applicability of the two simplified analytical solutions and distinguishes the individual contribution of the mechanical dispersion and molecular diffusion to total VOCs transport in an SVE system. Results show that dispersion plays an important role during SVE decontamination and neither the diffusion‐dominated solution nor the dispersion‐dominated solution can agree well with the numerical solution when both mechanical dispersion and molecular diffusion have significant contributions to the total VOCs transport flux. A composite analytical solution that linearly couples the diffusion‐ and dispersion‐dominated analytical solutions, which is proposed herein to eliminate the discrepancy between the analytical solutions and the numerical solution. Results indicate that the proposed composite analytical solution agrees well with the numerical solution and is an effective tool for quickly and accurately evaluating the time‐dependent effluent concentration for parameters of the different ranges of interest in an SVE remedial system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This article deals with the quantification of saltwater upconing below horizontal wells in freshwater lenses using analytical solutions as a computationally fast alternative to numerical simulations. Comparisons between analytical calculations and numerical simulations are presented regarding three aspects: (1) cyclic pumping; (2) dispersion; and (3) finite horizontal wells in a finite domain (a freshwater lens). Various hydrogeological conditions and pumping regimes within a dry half year are considered. The results show that the influence of elastic and phreatic storage (which are not taken into account in the analytical solutions) on the upconing of the interface is minimal. Furthermore, the analytical calculations based on the interface approach compare well with numerical simulations as long as the dimensionless interface upconing is below 1/3, which is in line with previous studies on steady pumping. Superimposing an analytical solution for mixing by dispersion below the well over an analytical solution based on the interface approach is appropriate in case the vertical flow velocity around the interface is nearly constant but should not be used for estimating the salinity of the pumped groundwater. The analytical calculations of interface upconing below a finite horizontal well compare well with the numerical simulations in case the distance between the horizontal well and the initial interface does not vary significantly along the well and in case the natural fluctuation of the freshwater lens is small. In order to maintain a low level of salinity in the well during a dry half year, the dimensionless analytically calculated interface upconing should stay below 0.25.  相似文献   

8.
As is frequently cited, dispersivity increases with solute travel distance in the subsurface. This behaviour has been attributed to the inherent spatial variation of the pore water velocity in geological porous media. Analytically solving the advection–dispersion equation with distance-dependent dispersivity is extremely difficult because the governing equation coefficients are dependent upon the distance variable. This study presents an analytical technique to solve a two-dimensional (2D) advection–dispersion equation with linear distance-dependent longitudinal and transverse dispersivities for describing solute transport in a uniform flow field. The analytical approach is developed by applying the extended power series method coupled with the Laplace and finite Fourier cosine transforms. The developed solution is then compared to the corresponding numerical solution to assess its accuracy and robustness. The results demonstrate that the breakthrough curves at different spatial locations obtained from the power series solution show good agreement with those obtained from the numerical solution. However, owing to the limited numerical operation for large values of the power series functions, the developed analytical solution can only be numerically evaluated when the values of longitudinal dispersivity/distance ratio eL exceed 0·075. Moreover, breakthrough curves obtained from the distance-dependent solution are compared with those from the constant dispersivity solution to investigate the relationship between the transport parameters. Our numerical experiments demonstrate that a previously derived relationship is invalid for large eL values. The analytical power series solution derived in this study is efficient and can be a useful tool for future studies in the field of 2D and distance-dependent dispersive transport. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Martinec and Grafarend (1997) have shown how the construction of Green's function in the Stokes boundary-value problem with gravity data distributed on an ellipsoid of revolution is approached in the O(e 0 2 )-approximation. They have also expressed the ellipsoidal Stokes function describing the effect of ellipticity of the boundary as a finite sum of elementary functions. We present an effective method of avoiding the singularity of spherical and the ellipsoidal Stokes functions, and also an analytical expression for the ellipsoidal Stokes integral around the computational point suitable for numerical solution. We give the numerical results of solving the ellipsoidal Stokes boundary-value problem and their difference with respect to the spherical Stoke boundary-value problem.  相似文献   

10.
A new steady‐state analytical solution to the two‐dimensional radial‐flow equation was developed for drawdown (head) conditions in an aquifer with constant transmissivity, no‐flow conditions at the top and bottom, constant head conditions at a known radial distance, and a partially completed pumping well. The solution was evaluated for accuracy by comparison to numerical simulations using MODFLOW. The solution was then used to estimate the rise of the salt water‐fresh water interface (upconing) that occurs under a pumping well, and to calculate the critical pumping rate at which the interface becomes unstable, allowing salt water to enter the pumping well. The analysis of salt water‐fresh water interface rise assumed no significant effect on upconing by recharge; this assumption was tested and supported using results from a new steady‐state analytical solution developed for recharge under two‐dimensional radial‐flow conditions. The upconing analysis results were evaluated for accuracy by comparison to those from numerical simulations using SEAWAT for salt water‐fresh water interface positions under mild pumping conditions. The results from the equation were also compared with those of a published numerical sharp‐interface model applied to a case on Cape Cod, Massachusetts. This comparison indicates that estimating the interface rise and maximum allowable pumping rate using the analytical method will likely be less conservative than the maximum allowable pumping rate and maximum stable interface rise from a numerical sharp‐interface model.  相似文献   

11.
Analytical solutions for the water flow and solute transport equations in the unsaturated zone are presented. We use the Broadbridge and White nonlinear model to solve the Richards’ equation for vertical flow under a constant infiltration rate. Then we extend the water flow solution and develop an exact parametric solution for the advection-dispersion equation. The method of characteristics is adopted to determine the location of a solute front in the unsaturated zone. The dispersion component is incorporated into the final solution using a singular perturbation method. The formulation of the analytical solutions is simple, and a complete solution is generated without resorting to computationally demanding numerical schemes. Indeed, the simple analytical solutions can be used as tools to verify the accuracy of numerical models of water flow and solute transport. Comparison with a finite-element numerical solution indicates that a good match for the predicted water content is achieved when the mesh grid is one-fourth the capillary length scale of the porous medium. However, when numerically solving the solute transport equation at this level of discretization, numerical dispersion and spatial oscillations were significant.  相似文献   

12.
We have investigated non‐Darcian flow to a vertical fracture represented as an extended well using a linearization procedure and a finite difference method in this study. Approximate analytical solutions have been obtained with and without the consideration of fracture storage based on the linearization procedure. A numerical solution for such a non‐Darcian flow case has also been obtained with a finite difference method. We have compared the numerical solution with the approximate analytical solutions obtained by the linearization method and the Boltzmann transform. The results indicate that the linearized solution agrees generally well with the numerical solution at late times, and underestimates the dimensionless drawdown at early times, no matter if the fracture storage is considered or not. When the fracture storage is excluded, the Boltzmann transform solution overestimates the dimensionless drawdown during the entire pumping period. The dimensionless drawdowns in the fracture with fracture storage for different values of dimensionless non‐Darcian hydraulic conductivity β approach the same asymptotic value at early times. A larger β value results in a smaller dimensionless drawdown in both the fracture and the aquifer when the fracture storage is included. The dimensionless drawdown is approximately proportional to the square root of the dimensionless time at late times.  相似文献   

13.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   

14.
A semi-analytical solution to the 2-D forward modelling of viscoelastic relaxation in a heterogeneous sphere induced by a surface toroidal force is derived. The model consists of a concentrically-nested elastic lithosphere, a viscoelastic mantle, and an eccentrically-nested viscoelastic core. Since numerical codes based on finite-element or spectral-finite-difference techniques for modelling viscoelastic relaxation in a spherical geometry in the presence of lateral viscosity variations are becoming more popular, reliable examples for testing and validating such codes are essential. The eccentrically-nested sphere solution has been tested by comparing it with two distinct results: The analytical solution for viscoelastic relaxation in concentrically-nested spheres and the time domain, spectral finite-element numerical solution for viscoelastic relaxation in eccentrically-nested spheres, with excellent agreement being obtained.  相似文献   

15.
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.  相似文献   

16.
Abstract A numerical model (NEWVAR) to simulate the transient movement of a discrete interface between salt water and fresh water has been developed. NEWVAR is designed to allow the analysis of a regional two-dimensional ground-water flow in coastal aquifers. The numerical solution permits the prediction of both regional fresh-water levels and two-dimensional fresh-water/salt-water interface by using nested square meshes.
The numerical solution is based on the finite-difference method; the Gauss-Jordan direct method is used for solving steady- and unsteady-state linear equations. Different procedures are used to avoid numerical difficulties in the transient position of the interface toe for two-dimensional areal flow.
The numerical solution was tested against the analytical ones for the cases of an advancing interface and of a floating fresh-water lens over sea water. These tests showed good agreement, thus verifying the finite-difference approximation. The results of an application of this model to a real aquifer are discussed in a companion paper entitled: "A Compatible Single-Phase/Two-Phase Numerical Model 2. Application to a Coastal Aquifer in Mexico."  相似文献   

17.
Under certain conditions the concentration and flux of a substance moving in a stochastic flow field are described by the stochastic convection equation. A numerical method for solving the one-dimensional problem is studied here. The differential operator is replaced by a discrete linear operator based on finite differences. The resulting system of stochastic equations is then replaced by a system of equations whose solution is the mean concentration or mean flux. This final system is analysed and conditions for a stable numerical solution are obtained. Finally, numerical examples are given and are compared to an approximate analytical solution to the stochastic convection equation.  相似文献   

18.
This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (LTRT) to solve saltwater intrusion problems. A directional-speed-of-sound (DSS) technique is introduced to take into account the hydraulic conductivity heterogeneity and discontinuity, as well as the velocity-dependent dispersion coefficient. The forcing terms in the LTRT model are customized in order to recover the density-dependent groundwater flow and mass transport equations. Using the LTRT with the squared DSS achieves at least second-order accuracy. The LTRT results are verified with Henry’s analytical solution as well as compared with several numerical examples and modified Henry problems that consider heterogeneous hydraulic conductivity and velocity-dependent dispersion. The numerical results show good agreement with the Henry analytical solution and with the numerical solutions obtained by other numerical methods.  相似文献   

19.
Seismoelectric coupling in an electric isotropic and elastic anisotropic medium is developed using a primary–secondary formulation. The anisotropy is of vertical transverse isotropic type and concerns only the poroelastic parameters. Based on our finite difference time domain algorithm, we solve the seismoelectric response to an explosive source. The seismic wavefields are computed as the primary field. The electric field is then obtained as a secondary field by solving the Poisson equation for the electric potential. To test our numerical algorithm, we compared our seismoelectric numerical results with analytical results obtained from Pride's equation. The comparison shows that the numerical solution gives a good approximation to the analytical solution. We then simulate the seismoelectric wavefields in different models. Simulated results show that four types of seismic waves are generated in anisotropic poroelastic medium. These are the fast and slow longitudinal waves and two separable transverse waves. All of these seismic waves generate coseismic electric fields in a homogenous anisotropic poroelastic medium. The tortuosity has an effect on the propagation of the slow longitudinal wave. The snapshot of the slow longitudinal wave has an oval shape when the tortuosity is anisotropic, whereas it has a circular shape when the tortuosity is isotropic. In terms of the Thomsen parameters, the radiation anisotropy of the fast longitudinal wave is more sensitive to the value of ε, while the radiation anisotropy of the transverse wave is more sensitive to the value of δ.  相似文献   

20.
圆弧型沉积盆地对平面SH波的散射   总被引:19,自引:0,他引:19  
采用波函数展开方法给出圆弧型沉积盆地对面SH波二维散射问题的封闭级数解答。利用外域Graf加法公式将解答归结为无穷代数方程组的求解。通过截断计算得到解答的数值结果,并通过连续条件的满足程度检验了截断计算的精度。将本文结果已有的近似解析解进行比较,指出了近似解答的误差来源和适用范围。给出一些典型算例说明盆地深度比对地震动的复杂作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号