首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   

2.
A detailed in situ isotopic (U–Pb, Lu–Hf) and geochemicalstudy of zircon populations in a composite sequence of foliatedto massive Cambro-Ordovician intrusions in the Deep Freeze Range(North Victoria Land, Antarctica), has highlighted great complexityin zircon systematics. Zircons in deformed granitoids and tonalitesdisplay complex internal textures, a wide spread of concordantU–Pb ages (between 522 and 435 Ma) and unusual trace-elementcompositions (anomalous enrichment of light rare earth elements,U, Th and Y) within single zircon grains. In contrast, zirconsfrom undeformed samples display a limited range of U–Pbages and trace-element compositions. Zircons from all age andtextural populations in most of the deformed and undeformedsamples show a relatively narrow range of Hf values, suggestingthat the Lu–Hf system remained undisturbed. Inferred emplacementages cover a time interval of about 30 Myr: from 508 to 493Ma for the oldest strongly foliated synkinematic Howard Peaksmegacrystic monzogranites and high-K calc-alkaline mafic tointermediate rocks of the ‘Corner Tonalite’ unit;from about 489 to 481 Ma for the younger massive shoshoniticmafic dyke suite and the high-K calc-alkaline Keinath granite.The observed isotopic and chemical variations in zircon areattributed to a sub-solidus recrystallization under hydrousconditions and varying temperature, in a setting characterizedby a transpressional to extensional stress regime. KEY WORDS: Antarctica; Cambro-Ordovician intrusives; Ross Orogen; zircon U–Pb geochronology  相似文献   

3.
A combined petrological and geochronological study was carriedout on mafic granulites and associated felsic gneisses fromthe McKaskle Hills, eastern Amery Ice Shelf, East Antarctica.Garnet-bearing mafic granulites exhibit reaction textures andexsolution textures that indicate two-stage metamorphic evolution.Thermobarometric estimates from matrix and symplectite assemblagesyield peak and retrograde PT conditions of 9·0–9·5kbar and 880–950°C and 6·6–7·2kbar and 700–750°C, respectively. Similar but slightlyscattered peak PT estimates of 7·9–10·1kbar and 820–980°C are obtained from the core compositionsof minerals from felsic para- and orthogneisses. Evidence forthe prograde history is provided by muscovite inclusions ingarnet from a paragneiss. Sensitive high-resolution ion microprobeU–Pb zircon dating reveals an evolutionary history forthe granulites, including a mafic and felsic igneous intrusionat 1174–1019 Ma, sedimentation after 932–916 Ma,and a high-grade metamorphism at 533–529 Ma. In contrast,Sm–Nd mineral–whole-rock dating mainly yields asingle age population at 500 Ma. This suggests that the McKaskleHills form part of the Prydz Belt, and that the relatively highpeak PT conditions and a decompression-dominated PTpath for the rocks resulted from a single Cambrian metamorphiccycle, rather than two distinct metamorphic events as formerlyinferred for the granulites from Prydz Bay. The age data alsoindicate that the Precambrian history of the McKaskle Hillsis not only distinct from that of the early Neoproterozoic terranein the northern Prince Charles Mountains, but also differentfrom that of other parts of the Prydz Belt. The existence ofmultiple basement terranes, together with considerable crustalthickening followed by tectonic uplift and unroofing indicatedby the clockwise PTt evolution, suggests thatthe Prydz Belt may represent a collisional orogen that resultedin the assembly of Gondwana during the Cambrian period. KEY WORDS: Mesoproterozoic basement; Cambrian metamorphism; P–T path; Prydz Belt; East Antarctica  相似文献   

4.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   

5.
Petrological studies and electron microprobe dating of monazitefrom the mafic Andriamena unit, north–central Madagascar,indicate that an apparently continuous PT path inferredfor Mg-granulites is actually discontinuous, resulting fromthe superposition of two distinct metamorphic events at 2·5Ga and  相似文献   

6.
Migmatitic granulites and arc-related felsic intrusives of Pan-Africanage form the bedrock in the Rio de Janeiro area, SE Brazil.These rocks preserve a partial record of three parageneses.The earliest assemblage (M1) grew during fabric formation inthe rocks (D1) and is characterized by the mineral assemblagePl + Bt + Sil + Kfs + Qtz. Peak metamorphic conditions (M2)are characterized by the assemblage Bt + Crd + Kfs + Pl + Grt+ liq + Qtz and are inferred to have developed during D2 foldingof the rocks at T = 750–800°C and P = 7 kbar. M3 reactiontextures overprint the M2 assemblage and comprise symplectiticintergrowth of cordierite(II) and quartz that formed after garnet,whereas secondary biotite formed as a result of reactions betweengarnet and K-feldspar. By comparing the observed modal abundanceswith modal contours of garnet, cordierite and quartz on therelevant pseudosection a post M2 PT vector indicatingcontemporaneous cooling and decompression can be deduced. Theinferred equilibrium assemblage and reaction textures are interpretedto reflect a clockwise PT path involving heating followedby post-peak decompression and associated cooling. We inferthat metamorphism occurred in response to advective heatingby the abundant syn-collisional (arc-related) I-type granitoidsin the region, consistent with the unusually high peak T/P ratio. KEY WORDS: advective heating; Ribeira belt; granulite; partial melting; PT pseudosection  相似文献   

7.
This study presents new geochemical (major and trace element,Nd–Sr isotope) and U–Pb zircon, monazite, titaniteand rutile data for various rock types (eclogite, high-pressuregranulite, amphibolite, orthogneiss, leucosome) of the high-grademetamorphic Mariánské Lázn  相似文献   

8.
Previous studies of metapelitic rocks from the core of the southernBrittany metamorphic belt suggest a complex clockwise PTevolution. We use pseudosections calculated for an average subaluminousmetapelite composition in the MnNCKFMASH system and averagePT calculations to investigate in more detail the metamorphicevolution of these rocks. For migmatites, sequential occurrenceof kyanite, kyanite + staurolite and sillimanite suggests thata prograde evolution to P > 8 kbar at T  相似文献   

9.
A microanalytical trace element and geochronological study wascarried out on mafic amphibole-rich cumulates (quartz diorites)cropping out in northern Victoria Land (Antarctica). Associatedtonalites and basement rocks were also investigated. Rock texturesand major and trace element mineral compositions reveal thepresence in quartz diorites of two mineral assemblages: (1)clinopyroxene-I + brown amphibole ± dark mica; (2) clinopyroxene-II+ green amphibole + plagioclase + quartz. Both mineral assemblagescontain mafic phases with elevated Mg-number, but their traceelement signatures differ significantly. In situ U–Pbzircon geochronology was carried out to support petrogeneticand geological interpretations. Quartz diorites were emplacedin the mid-crust probably at 516 ± 3 Ma. Parental meltsof quartz diorites were computed by applying solid/liquid partitioncoefficients. The melt in equilibrium with the first mineralassemblage (melt-I) is extremely depleted in heavy rare earthelements (HREE), Y, Ti, Zr and Hf (at about 0·2 timesnormal mid-ocean ridge basalt) and enriched in B, Th, U, thelarge ion lithophile elements and light REE (LREE). It sharesmany similarities with sanukitic melts (e.g. Setouchi andesites),which originated by equilibration of subduction-derived sedimentmelts with a refractory mantle. The melt in equilibrium withthe second mineral assemblage (melt-II) is characterized bya steep LREE enrichment (LaN/YbN up to 39), a U-shaped HREEpattern and low Ti, which is depleted relative to HREE. Thetrace element signature of melt-II can be acquired through amphibolecrystallization starting from a sanukitic melt similar to melt-I,probably in a deeper magma chamber. Our results allow us toconstrain that melts from the subducted slab were produced ona regional scale, in accordance with literature data, belowa large sector of the east Gondwana margin during the mid-Cambrian.Implications for the role of amphibole in petrogenesis of subduction-relatedmagmas are also discussed. KEY WORDS: amphibole; sanukite; high-Mg andesites; Ross Orogeny; Antarctica  相似文献   

10.
Supracrustal units metamorphosed at mid-crustal conditions withinthe Paleoproterozoic Trans-Hudson Orogen are preserved withinan obliquely exposed continental collision zone on Baffin Island(Canada). Early granulite-facies assemblages yield thermobarometricdata and phase diagram information that define a steep, compressiveP–T path segment. These assemblages are bracketed betweenca. 1849 and 1835 Ma, and are interpreted to result from (1)heat advection by an 1865 +4/–2 to 1848 ± 2 MaAndean-type granitic batholith, and (2) a ca. 1845 Ma crustalthickening event associated with accretion of an intra-oceanicarc terrane. A subsequent regional metamorphic event is characterizedby the growth of retrograde, upper amphibolite-facies assemblagesthat define a clockwise, decompressive P–T path. Mineralgrowth is bracketed between 1820 ± 1 and 1813 ±2 Ma, and is localized within deformation zones associated withthe 1820 +4/–3 to 1795 ± 2 Ma collision of theRae and Superior cratons. The metamorphic history of BaffinIsland supports a progressive change from plate-margin to intraplateprocesses within an evolving convergent orogen during the Paleoproterozoicthat is similar to those documented in younger collisional belts. KEY WORDS: polymetamorphism; geochronology; Paleoproterozoic; Trans-Hudson Orogen  相似文献   

11.
A light-coloured, fine-grained eclogite sample from near thevillage of Hammerunterwiesenthal in the Erzgebirge (NW BohemianMassif) preserves the low-variance mineral assemblage of garnet,omphacite, phengite, talc, amphibole, clinozoisite, quartz,rutile, and accessory phases. Porphyroblasts of amphibole, clinozoisite,and phengite formed during a late stage (III) of metamorphism.Paragonite joined the assemblage late in this stage (IIIb).The chemical zonation of the minerals was carefully studied.Various geothermobarometric methods were applied, especiallyinvolving phengite and talc. The constrained PT pathfor the eclogite starts at about 480°C and 25 kbar (stageIb), followed by a significant temperature rise (stage II) atslightly increasing pressure. At the peak PT conditionsof 720°C and 27 kbar, blastesis of amphibole, clinozoisite,and phengite was caused by infiltrating hydrous fluids. Theresulting density reduction may have allowed buoyant upliftof the eclogite. Subsequently, significant cooling occurredat high pressures. Stage IIIb is characterized by PTconditions around 520°C and 18 kbar at reduced water activities.This unusual late PT evolution might explain the freshnessof the eclogite, including the preservation of chemical zonationon the micrometre scale. KEY WORDS: eclogite; Saxonian Erzgebirge; PT evolution; talc; phengite  相似文献   

12.
ZEH  A. 《Journal of Petrology》2006,47(12):2335-2356
A mathematical approach is presented for the calculation ofthe major and trace element fractionation that is caused bygrowth of zoned garnet in metamorphic rocks. This approach isbased on textural and compositional parameters directly obtainedfrom natural examples. It takes into account the mode and compositionof all unzoned minerals, as well as the mode, crystal size distributionand zonation patterns of garnet grains of different sizes withina certain rock volume. These parameters can be used to fit functionsfrom which the amount of garnet fractionation at each step ofa garnet growth history can be calculated. The approach is testedfor two compositionally distinct domains within a single garnet–biotitegneiss sample from the Ruhla Crystalline Complex. This samplecontains unusual flat-top garnet grains with Y2O3-rich cores.It is shown that MnO, FeO and Y2O3 are extremely fractionatedduring garnet growth, but in different ways, and that MnO fractionationdoes not obey a Rayleigh function. To demonstrate the influenceof garnet fractionation on P–T path estimates, quantitativephase diagrams in the model system Na2O–K2O–CaO–MnO–FeO–MgO–Al2O3–TiO2–SiO2–H2Oare constructed by means of the computer software THERMOCALC.The good agreement between calculated and observed mineral assemblagesand garnet compositions for all fractionation steps indicatesthat the new approach can be used to infer detailed P–Tpaths, even for rocks that contain complexly zoned garnet grains.The results indicate that garnet growth in the metapelite underinvestigation occurred along a linear P–T path from 470°Cand 2·7 kbar to 580°C and 8·5 kbar. The resultsalso show that garnet cores with high Y2O3 contents of about1 wt % nucleated over a temperature interval of c. 90°C,indicating that Y in garnet is relatively insensitive to temperaturechanges. KEY WORDS: garnet; fractionation; pseudosection; yttrium; THERMOCALC  相似文献   

13.
We report experimental results and whole-rock trace-elementcharacteristics of a corundum-bearing mafic rock from the Horomanperidotite complex, Japan. Coronitic textures around corundumin the sample suggest that corundum was not stable in maficrock compositions during the late-stage PT conditionsrecorded in the complex (P < 1 GPa, T < 800°C). Basedon the experimental results, corundum is stable in aluminousmafic compositions at pressures of 2–3 GPa under dry conditions,suggesting that the corundum-bearing mineral assemblages developedunder upper-mantle conditions, probably within the surroundingperidotite. Variations in the trace-element compositions ofthe corundum-bearing mafic rock and related rocks can be controlledby modal variations of plagioclase, clinopyroxene and olivine,suggesting that they formed as gabbroic rocks at low-pressureconditions, and that the corundum-bearing mafic rock was derivedfrom a plagioclase-rich protolith. A complex PT trajectory,involving metamorphism of the plagioclase-rich protolith ata pressure higher than that at which it was first formed, isneeded to explain the origin of the corundum-bearing mafic rocks.They show no evidence for partial melting after their formationas low-pressure cumulates. The Horoman complex is an exampleof a large peridotite body containing possible remnants of subductedoceanic lithosphere still retaining their original geochemicalsignatures without chemical modification during subduction andexhumation. KEY WORDS: Horoman; mafic rock; corundum; experiment; PT history; recycling  相似文献   

14.
CORFU  F. 《Journal of Petrology》2004,45(9):1799-1819
Mangerites, charnockites, anorthosites, gabbros and granitesoccur within a high-grade metamorphic complex in the Lofoten–Vesterålenislands of northern Norway. U–Pb dating of zircon, titaniteand monazite indicates a three-stage magmatic history beginningat 1870–1860 Ma with the emplacement of the Lødingenand Hopen plutons, followed by a dominant stage at 1800–1790Ma that formed the bulk of the suite, and concluded by the emplacementof pegmatites, local rehydration and retrogression between 1790and 1770 Ma. On the scale of the Baltic Shield the 1870–1860Ma episode corresponds to contraction, amalgamation of arcs,and regional deformation. By contrast, the episode at 1800–1790Ma was characterized by major shifts in plate convergence, byintraplate deformation, and by a diversity of magmatic associationsincluding suites derived from the subcontinental mantle andwidespread granitoid rocks extracted from the continental crust.The diversity of concurrent magmatic events across the Svecofennianorogen, and the temporal coincidence with collisional eventsin coeval orogenic belts, suggests that the genesis of the suiteof magmatic rocks may have been related to tectonically drivenmechanisms of magma generation. KEY WORDS: anorthosite–mangerite–charnockite–granite; lithospheric processes; Lofoten–Vesterålen; Svecofennian orogen; U–Pb geochronology  相似文献   

15.
Different lithologies (impure marble, eclogite and graniticorthogneiss) sampled from a restricted area of the coesite-bearingBrossasco–Isasca Unit (Dora Maira Massif) have been investigatedto examine the behaviour of 40Ar–39Ar and Rb–Srsystems in phengites developed under ultrahigh-pressure (UHP)metamorphism. Mineralogical and petrological data indicate thatzoned phengites record distinct segments of the PT path:prograde, peak to early retrograde in the marble, peak to earlyretrograde in the eclogite, and late retrograde in the orthogneiss.Besides major element zoning, ion microprobe analysis of phengitein the marble also reveals a pronounced zoning of trace elements(including Rb and Sr). 40Ar–39Ar apparent ages (35–62Ma, marble; 89–170 Ma, eclogite; 35–52 Ma, orthogneiss),determined through Ar laserprobe data on phengites (step-heatingand in situ techniques), show wide intra-sample and inter-samplevariations closely linked to within-sample microchemical variations:apparent ages decrease with decreasing celadonite contents.These data confirm previous reports on excess Ar and, more significantly,highlight that phengite acted as a closed system in the differentlithologies and that chemical exchange, not volume diffusion,was the main factor controlling the rate of Ar transport. Conversely,a Rb–Sr internal isochron from the same eclogite yieldsan age of 36 Ma, overlapping with the time of the UHP metamorphicpeak determined through U–Pb data and thereby corroboratingthe previous conclusion that UHP metamorphism and early retrogressionoccurred in close succession. Different phengite fractions ofthe marble yield calcite–phengite isochron ages of 36to 60 Ma. Although this time interval matches Ar ages from thesame sample, Rb–Sr data from phengite are not entirelyconsistent with the whole dataset. According to trace elementvariations in phengite, only Rb–Sr data from two wet-groundphengite separates, yielding ages of 36 and 41 Ma, are internallyconsistent. The oldest age obtained from a millimetre-sizedgrain fraction enriched in prograde–peak phengites mayrepresent a minimum age estimate for the prograde phengite relics.Results highlight the potential of the in situ 40Ar–39Arlaser technique in resolving discrete PT stages experiencedby eclogite-facies rocks (provided that excess Ar is demonstrablya negligible factor), and confirm the potential of Rb–Srinternal mineral isochrons in providing precise crystallizationages for eclogite-facies mineral assemblages. KEY WORDS: 40Ar–39Ar dating; Rb–Sr dating; phengite; SIMS; UHP metamorphism  相似文献   

16.
A composite intrusive igneous complex in the central mountainrange of Queen Maud Land (Thor Range), Antarctica, displayscharacteristic features of anorogenic granites. A suite of massiveintrusives and various sets of dykes and satellite intrusionsare ferroan, alkalic to alkali–calcic, and weakly peraluminous.An early set of plutons consists of charnockitic alkali-granites;a later group of plutons comprises fayalite Qtz-syenites. Coarsemesoperthite is the dominant mineral in all rocks, quartz isabundant and plagioclase is a minor mineral. Olivine (fayalite)is the characteristic mafic mineral, but subcalcic augite andoccasionally pigeonite or orthopyroxene are present. In mostsamples, amphibole is the dominant mafic mineral and its compositionis close to end-member hastingsite. It contains high concentrationsof F and Cl. Some samples contain igneous fluorite. Thermobarometrysuggests a temperature of 900 ± 25°C and a pressureof 0·4 ± 0·1 GPa for the crystallizationconditions of the pyroxene–olivine assemblages. The solidustemperature of 800–850°C for both suites of plutonicrocks is typical of water-deficient granitic melts. The estimatedlow water activity of 0·3–0·5 at solidusconditions is consistent with the high halogen content of thebulk-rocks and their constituent minerals. In the absence ofan aqueous fluid, the halogens remained in the minerals at thesolidus. Oxygen fugacity stayed below QFM in all igneous rocksabove solidus. This is typical of melts derived from partialmelting of mafic source rocks. The igneous rocks were locallyaffected by at least three distinct episodes of hydration. Asthe melt approached solidus conditions, fayalite and pyroxenewere locally transformed into hastingsite as a result of increasingfugacity of volatile components. Fayalite-free and fayalite-bearingigneous rocks are arranged in banded structures. Subsolidushydration locally modified the igneous rocks and transformedpyroxene- and fayalite-bearing granites into biotite-granitesand hornblende-granites in which all evidence of former high-Thistory was erased. This local hydration of igneous rocks occurredin response to uptake of H2O that had been given off by gneissicxenoliths as a result of progressing, continuous, dehydrationreactions. The reactions in the gneiss xenoliths were drivenby contact metamorphism. This exchange of H2O between igneousand metamorphic rocks occurred in a fluid-absent regime at temperaturesof about 750°C. Late reaction veins formed by hydraulicfracturing of the plutonic rocks and indicate the presence ofa low-density fluid phase at amphibolite facies conditions. KEY WORDS: anorogenic granite; fayalite; hastingsite; fluid recycling; Antarctica  相似文献   

17.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

18.
The Menderes Massif and the overlying Lycian Nappes occupy anextensive area of SW Turkey where high-pressure–low-temperaturemetamorphic rocks occur. Precise retrograde PT pathsreflecting the tectonic mechanisms responsible for the exhumationof these high-pressure–low-temperature rocks can be constrainedwith multi-equilibrium PT estimates relying on localequilibria. Whereas a simple isothermal decompression is documentedfor the exhumation of high-pressure parageneses from the southernMenderes Massif, various PT paths are observed in theoverlying Karaova Formation of the Lycian Nappes. In the uppermostlevels of this unit, far from the contact with the MenderesMassif, all PT estimates depict cooling decompressionpaths. These high-pressure cooling paths are associated withtop-to-the-NNE movements related to the Akçakaya shearzone, located at the top of the Karaova Formation. This zoneof strain localization is a local intra-nappe contact that wasactive in the early stages of exhumation of the high-pressurerocks. In contrast, at the base of the Karaova Formation, alongthe contact with the Menderes Massif, PT calculationsshow decompressional heating exhumation paths. These paths areassociated with severe deformation characterized by top-to-the-eastshearing related to a major shear zone (the Gerit shear zone)that reflects late exhumation of high-pressure parageneses underwarmer conditions. KEY WORDS: exhumation; high-pressure–low-temperature metamorphism; multi-equilibrium PT estimates; Lycian Nappes; Menderes Massif  相似文献   

19.
High-Mg–Al, silica-undersaturated metapelites from theOygarden Group of islands, East Antarctica, preserve clear evidencefor the stable coexistence of the assemblage orthopyroxene +corundum in natural rocks. The quartz-absent metapelite occursas pods and isolated layers within a high-strain zone relatedto deformation during the c. 0·93 Ga Rayner StructuralEpisode. Assemblages that include orthopyroxene, corundum, sapphirine,sillimanite, cordierite, garnet and kornerupine are developedacross a pre-existing compositional zoning, leading to contrastingmineral Fe–Mg ratios. The assemblage orthopyroxene–corundumis shown to exist in only a very restricted range of bulk compositionsand PT histories. Simplified qualitative FMAS grids havebeen constructed for kornerupine-absent and -present systems,illustrating MAS terminations and divariant equilibria thathelp to describe the mineral assemblage and reaction history.Reaction textures that include coronas of sapphirine and sillimaniteseparating orthopyroxene and corundum, and symplectites of orthopyroxene+ sapphirine ± cordierite/plagioclase, orthopyroxene+ sillimanite ± cordierite/plagioclase and orthopyroxene+ sapphirine + sillimanite embaying garnet, imply a clockwisePTt evolution. Conditions of P > 9–10kbar and T  相似文献   

20.
Garnet clinopyroxenite and garnet websterite layers occur locallywithin mantle peridotite bodies from the External Liguride Jurassicophiolites (Northern Apennines, Italy). These ophiolites werederived from an ocean–continent transition similar tothe present-day western Iberian margin. The garnet clinopyroxenitesare mafic rocks with a primary mineral assemblage of pyrope-richgarnet + sodic Al-augite (Na2O 2·5 wt %, Al2O3 12·5wt %), with accessory graphite, Fe–Ni sulphides and rutile.Decompression caused Na-rich plagioclase (An50–45) exsolutionin clinopyroxene porphyroclasts and extensive development ofsymplectites composed of secondary orthopyroxene + plagioclase(An85–72) + Al-spinel ± clinopyroxene ±ilmenite at the interface between garnet and primary clinopyroxene.Further decompression is recorded by the development of an olivine+ plagioclase-bearing assemblage, locally under syn-kinematicconditions, at the expense of two-pyroxenes + Al-spinel. Mg-richgarnet has been also found in the websterite layers, which arecommonly characterized by the occurrence of symplectites madeof orthopyroxene + Al-spinel ± clinopyroxene. The enclosingperidotites are Ti-amphibole-bearing lherzolites with a fertilegeochemical signature and a widespread plagioclase-facies myloniticfoliation, which preserve in places a spinel tectonite fabric.Lu–Hf and Sm–Nd mineral isochrons (220 ±13 Ma and 186.0 ± 1·8 Ma, respectively) have beenobtained from a garnet clinopyroxenite layer and interpretedas cooling ages. Geothermobarometric estimates for the high-pressureequilibration have yielded T 1100°C and P 2·8 GPa.The early decompression was associated with moderate cooling,corresponding to T 950°, and development of a spinel tectonitefabric in the lherzolites. Further decompression associatedwith plagioclase–olivine growth in both peridotites andpyroxenites was nearly isothermal. The shallow evolution occurredunder a brittle regime and led to the superposition of hornblendeto serpentine veining stages. The garnet pyroxenite-bearingmantle from the External Liguride ophiolites represents a raretectonic sampling of deep levels of subcontinental lithosphereexhumed in an oceanic setting. The exhumation was probably accomplishedthrough a two-step process that started during Late Palaeozoiccontinental extension. The low-pressure portion of the exhumationpath, probably including also the plagioclase mylonitic shearzones, was related to the Mesozoic (Triassic to Jurassic) riftingthat led to continental break-up. In Jurassic times, the studiedmantle sequence became involved in an extensional detachmentprocess that resulted in sea-floor denudation. KEY WORDS: garnet pyroxenite; ophiolite; non-volcanic margin; mantle exhumation; Sm–Nd and Lu–Hf geochronology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号