首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The middle Cenomanian–lower Turonian deposits of Ohaba-Ponor section (Southern Carpathians) were studied from biostratigraphic and isotopic points of view. Both the qualitative and semiquantitative nannofloral analyses, as well as the stable isotope (δ13C and δ18O) data support significant palaeoenvironmental changes in the investigated interval. Two δ13C positive excursions were recognized: (1) an excursion up to 1.8‰ (PDB) within the middle/late Cenomanian boundary; (2) an excursion up to 2.2‰ (PDB) in the Cenomanian/Turonian boundary interval. The oldest δ13C positive excursion recorded (placed within the Acanthoceras jukes-brownei/Eucalycoceras pentagonum Ammonite Zone boundary interval, and in the NC11 Calcareous Nannofossil Zone respectively) could be assigned to the middle Cenomanian Event II (MCEII). During the above-mentioned event, significant increase in abundance of Watznaueria barnesae, followed by successive blooms of Biscutum constans and Eprolithus floralis, were observed. The youngest δ13C positive excursion was identified in the Cenomanian/Turonian boundary interval (in the NC12 and lower part of the NC13 Calcareous Nannofossil Zones). Even the amplitude of this δ13C positive excursion is lower in the Ohaba-Ponor section, as generally reported, this may represent the regional record of the OAE2. The successive peaks of the nannofossils Biscutum constans, Zeugrhabdotus erectus and Eprolithus floralis indicate episodes of cooler surface water and high fertility, which preceded and lasted the Cenomanian/Turonian boundary event. Additionally, fluctuations of δ18O values between −2 and −6‰ suggest also cooler conditions within the Cenomanian/Turonian boundary interval.  相似文献   

2.
Fluctuation in calpionellid, foraminiferal, and nannofossil diversity and abundance are documented in two successions located in the eastern part of the Upper Jurassic–Lower Cretaceous carbonate platform of the Southern Carpathian area, Romania. The lower part of the studied sections consists of upper Tithonian–upper Berriasian bioclastic limestones. This age is supported by the presence of the calpionellid assemblages assigned to the Crassicollaria, Calpionella, and Calpionellopsis Zones. Based on biostratigraphical data, a gap was identified within the uppermost Berriasian–base of the upper Valanginian (the interval encompasses the Boissieri, Pertransiensis, Campylotoxum, and lower part of the Verrucosum ammonite Zones). Hence, the upper Tithonian–upper Berriasian bioclastic limestones are overlain by upper Valanginian–lower Hauterivian pelagic limestones (the interval covered by the NK3B and NC4A nannofossil Subzones). A detailed qualitative and semiquantitative analysis of the nannoflora was carried out over this interval. To estimate the surface water fertility conditions, the nannoplankton-based nutrient index (NI) was calculated. The fluctuation pattern of NI allow us to recognize four phases in the investigated interval, as follows: (1) phase I (covering the lower part of the NK3B nannofossil Subzone and the upper part of the Verrucosum ammonite Zone, respectively) is characterized by low values of the NI (below 20%), by the dominance of the genus Nannoconus in the nannofloral assemblages (between 60–70%), and moderate abundance of Watznaueria barnesae (up to 23%), while the high-fertility nannofossils constitute a minor component of the assemblages; (2) phase II (placed in the NK3B nannofossil Subzone, extending from the top of Verrucosum ammonite Zone, up to the lower part of the Furcillata ammonite Zone) is characterized by increase of NI above 30%, a decrease of nannoconids (up to 50% at the top), while Watznaueria barnesae increases in abundance up to 27%. The fertility proxies (Diazomatolithus lehmanii, Zeugrhabdotus erectus, Discorhabdus rotatorius, and Biscutum constans) represent again a minor component of the recorded nannofloras (less than 7% in both sections), but they have an ascending trend; (3) phase III (which encompasses the boundary interval of the NK3B and NC4A nannofossil Subzones, corresponding to the upper part of the Furcillata ammonite Zone) contains higher NI values (over 35%, and up 52% towards the base of this phase), an abrupt nannoconid decrease (down to 20%), higher abundance of Watznaueria barnesae (over 30%), while the fertility nannofossils became an important nannofloral component, jointly amounting to almost 20%; (4) phase IV (identified within the NC4A Nannofossil Zone and corresponding to the boundary interval of the Furcillata and Radiatus ammonite Zones) is characterized by a decrease of NI to 25%, a recovery of the nannoconids up to 40%, a decline in abundance of Watznaueria barnesae to 25%, together with a pronounced drop of fertility taxa, which make together no more than 8%. We assume that maximum of eutrophication in the studied interval from the Southern Carpathians was in the Furcillata ammonite Zone. Notably, within the phases 2 and 3, the morphological changes identified in the benthic foraminiferal assemblages (the predominance of flattened morphologies, together with the presence of conical and trochospiral inflated forms), as well as the occurrence of the Zoophycos trace fossils and pyrite framboids, indicate dysaerobic conditions. In the Southern Carpathians, the late Valanginian–early Hauterivian biogeographical changes are coeval with the initiation of the carbonate platform drowning.  相似文献   

3.
《Cretaceous Research》2012,33(6):705-722
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

4.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

5.
The first occurrence (FO) of Marthasterites furcatus was correlated with the FOs of other nannofossils, inoceramid bivalves and foraminifers in the Bohemian Cretaceous Basin and Outer Flysch Carpathians. The correlation showed that the FO of M. furcatus was diachronous, becoming younger from east to west. In the Silesian Unit it appears in the lower Turonian in association with Eprolithus moratus (UC6b nannofossil Zone). In the Pavlovské vrchy klippes it appears in the upper middle Turonian together with Lithastrinus septenarius (UC9 Zone). In the Bohemian Cretaceous Basin, the FO of M. furcatus was observed in the lower upper Turonian just above the FO of Liliasterites angularis. The presence of M. furcatus in Turonian strata is scarce and discontinuous up to its sudden quantitative increase (represented by 5–27% in assemblages) below the FO of the inoceramid bivalve species Cremnoceramus waltersdorfensis and C. deformis erectus in the Turonian–Coniacian boundary interval. The top of the M. furcatus acme was recorded below the FO of Micula staurophora. The second quantitative rise of M. furcatus (12% in assemblage) was found in the lower lower Campanian of the Pavlovské vrchy klippes above the FO of Broinsonia parca parca in the UC14a Zone and the last occurrence of the planktonic foraminifer Whiteinella baltica. Above this second acme M. furcatus disappears. The significantly earlier appearance of M. furcatus in the Silesian Basin may be connected with a southeast-heading surface current from the North European epicontinental sea where the species appeared in the early Turonian too.  相似文献   

6.
塔里木盆地西部晚白垩世钙质超微化石   总被引:3,自引:0,他引:3  
本文分析研究了塔里木盆地西部晚白垩世钙质超微化石,划分出Quadrumgartneri,Eprolithus floralis两个组合,从一个新的角度为探讨库克拜组和乌依塔克组的地层时代及其沉积环境提供有关的论据.  相似文献   

7.
The response of shallow‐water sequences to oceanic anoxic event 2 and mid‐Cenomanian events 1a and 1b was investigated along the west African margin of Morocco north of Agadir (Azazoul) and correlated with the deep‐water sequence of the Tarfaya Basin (Mohammed Beach) based on biostratigraphy, mineralogy, phosphorus and stable isotopes. In the deeper Mohammed Beach section results show double peaks in δ13Corg for mid‐Cenomanian events 1a and 1b (Rotalipora reicheli biozone, lower CC10a biozone), the characteristic oceanic anoxic event 2 δ13C excursion (Rotalipora cushmani extinction, top of CC10a biozone) and laminated (anoxic) black shale. In the shallow environment north of Agadir, a fluctuating sea‐level associated with dysoxic, brackish and mesotrophic conditions prevailed during the middle to late Cenomanian, as indicated by oyster biostromes, nannofossils, planktonic and benthonic foraminiferal assemblages. Anoxic conditions characteristic of oceanic anoxic event 2 (for example, laminated black shales) did not reach into shallow‐water environments until the maximum transgression of the early Turonian. Climate conditions decoupled along the western margin of Morocco between mid‐Cenomanian event 1b and the Cenomanian–Turonian boundary, as also observed in eastern Tethys. North of Agadir alternating humid and dry seasonal conditions prevailed, whereas in the Tarfaya Basin the climate was dry and seasonal. This climatic decoupling can be attributed to variations in the Intertropical Convergence Zone and in the intensity of the north‐east trade winds in tropical areas.  相似文献   

8.
The biostratigraphy and the response of calcareous nannofossils to the End Cretaceous warming are investigated in the lower boundary of Kalat formation through the record of species richness, diversity, distribution patterns, and statistical treatments. The Kalat formation comprised of coarse-grained detritus limestone with subordinate sandstone intercalations. In the studied sections, the number of ten samples were taken and prepared with smear slide. In Dobaradar, section 22 species; in Kalat, section 25 species; and in Chahchaheh, section 32 species have been determined. Based on nannoplanktons and as a result of biostratigraphic studies, the nannofossil standard zones (CC25–CC26) were identified in all of sections. According to these zones in all of sections, the age of the studied thickness is Late Maastrichtian–Late Late Maastrichtian. In these sections, the presence of Micula murus at the end of Neyzar formation and the presence of this species at the lower part of Kalat formation indicate that the investigated boundary is Late Maastrichtian in age. The paleoecological results point to warm climate. The presence of warm water indicators (M. murus and Micula prinsii) and the absence of cool water indicators (Ahmuellerella octoradiata, Kamptnerius magnificus, and Nephrolithus frequens) suggest warm surface water conditions in these areas. In the lower boundary of Kalat formation, base on Lithraphidites spp. and Watznaueria barnesae, lowered fertility condition with low productivity at the end of the Maastrichtian were suggested, and the studied area was deposited in shallow marine environment in relatively low latitude.  相似文献   

9.
This paper presents a considerably revised biostratigraphy for Upper Albian through Coniacian pelagic limestone and shale sequences in the northeastern Caucasus region based primarily on planktic foraminiferal distributions. The use of concentrated acetic acid for the extraction of microfossils from the hard limestones has yielded a much more detailed planktic foraminiferal biostratigraphy than has been documented previously. Because of the low latitude location of the study area the high diversity assemblages contain many of the biomarkers used to identify standard Tethyan biozones ranging from the Rotalipora appenninica Zone through the Dicarinella concavata Zone. A key result of this study is the recognition of an apparently continuous Cenomanian/Turonian boundary interval within a laminated, dark marl that is enriched in organic carbon. Extinction of the single-keeled rotaliporids corresponds with the onset of deposition of the laminated marl beds.  相似文献   

10.
Upper Barremian-Lower Aptian sediments of the Sarcheshmeh and Sanganeh formations in the Kopet Dagh area, northeast Iran were studied with regard to their calcareous nannofossil content and their δ13Ccarb signal. The sediments are composed mainly of marlstones, argillaceous limestones and limestones. Based on the occurrence of biostratigraphic index taxa, the calcareous nannofossil zones NC5, NC6 and the NC7A Subzone were recognised. The calcareous nannofossils and the δ13Ccarb data enable recognition of the early Aptian Oceanic Anoxic Event 1a (OAE 1a). The deposits of the OAE 1a interval are characterised by the rarity of nannoconids and a sharp negative δ13Ccarb excursion (1.36‰), followed by an abrupt positive δ13Ccarb excursion of 4-5‰; both events have been recognised elsewhere in OAE 1a deposits in the Tethys. In the OAE 1a interval, the relative abundance of Watznaueria barnesiae/Watznaueria fossacincta is higher (more than 40%) than that of Biscutum spp., Discorhabdus spp. and Zeugrhabdotus spp., which indicates dissolution. In the upper part of the section, the higher relative abundance of mesotrophic and oligotrophic taxa (Watznaueria spp. and nannoconids respectively) and the enhanced relative abundance of eutrophic taxa (Biscutum spp., Discorhabdus spp., Zeugrhabdotus spp.) is indicative of an environment with slightly increased nutrient content. The presence of warm water taxa (Rhagodiscus asper and nannoconids) and the absence of cool water taxa (Repagulum and Crucibiscutum) suggest warm surface-water conditions.  相似文献   

11.
Changes in morphological diversity and taxonomic composition of late Albian-early Turonian foraminiferal and radiolarian assemblages from the northern Peri-Tethys are considered. Several stages are defined in evolution of planktonic foraminifers: polytaxic (Albian-Cenomanian), oligotaxic (Cenomanian-Turonian boundary period), and polytaxic (Turonian). The Albian-Cenomanian stage was characterized by intense development of rotaliporids representing an intricate group of planktonic foraminifers, which became extinct in the terminal Cenomanian. An intense speciation of the radiolarian genus Crolanium and last occurrences of its most species, the index species C. cuneatum included, was characteristic of the terminal Albian. Spheroid and discoid radiolarians were dominant in the Cenomanian, while the Turonian was marked by intense development of all the radiolarian morphotypes.  相似文献   

12.
Profound biotic changes accompanied the late Cenomanian δ13C excursion and OAE2 in planktic foraminifera in the Tarfaya Basin of Morocco. Planktic foraminifera experienced a severe turnover, though no mass extinction, beginning with the rapid δ13C excursion and accelerating with the influx of oxic bottom waters during the first peak and trough of the excursion. Species extinctions equaled the number of evolving species, though only the disaster opportunists Guembelitria and Hedbergella thrived along with a low oxygen tolerant benthic assemblage. The succeeding δ13C plateau and organic-rich black shale deposition marks the anoxic event and maximum biotic stress accompanied by a prolonged drop in diversity to just two species, the dominant (80–90%) low oxygen tolerant Heterohelix moremani and surface dweller Hedbergella planispira. After the anoxic event other species returned, but remained rare and sporadically present well into the lower Turonian, whereas Heterohelix moremani remained the single dominant species. The OAE2 biotic turnover suggests that the stress to calcareous plankton was related to changes in the watermass stratification, intensity of upwelling, nutrient flux and oxic levels in the water column driven by changes in climate and oceanic circulation. Results presented here demonstrate a 4-stage pattern of biotic response to the onset, duration, and recovery of OAE2 that is observed widely across the Tethys and its bordering epicontinental seas.  相似文献   

13.
The biochronology of Cenomanian-early Turonian ammonite faunas from three key stratotype areas (north-west Europe, central Tunisia and the Western Interior of North America) has been analysed and revised by utilizing the unitary association method. This review is prompted by the huge amount of biostratigraphic data published during recent decades and by a taxonomic homogenisation of the ammonite faunas from these key areas. The Cenomanian and lower Turonian of Tunisia comprise twenty-four Unitary Association zones and the middle Cenomanian-lower Turonian of the Western Interior Basin twenty-three such zones. The unitary association method means a two-fold increase in resolution of these ammonite zonations compared to the standard, empirical schemes. Central Tunisia and the Western Interior are correlated with north-west Europe by constructing a zonation including all taxa common to these areas. These correlations highlight the variable completeness and resolution of the faunal record through space and time, and reveal a significant number of diachronous taxa between the three areas. These correlations enable the designation of a new global marker for the middle/upper Cenomanian boundary, which is characterised by the disappearance of the genera Turrilites, Acanthoceras and Cunningtoniceras and by the appearance of Eucalycoceras, Pseudocalycoceras and Euomphaloceras. The only synchronous datum known is the last occurrence of Turrilites acutus, which may thus be used as a marker for the middle/upper Cenomanian boundary, provided that it does not turn out to be diachronous in the light of any new data.  相似文献   

14.
Lower Cretaceous sediments of the northwestern part of the Kopet Dagh sedimentary basin have been sampled with the purpose to study stratigraphic distribution of calcareous nannofossils. A total of 87 samples from the 1900-m-thick marly limestones, shales and siltstones of the Sarcheshmeh and Sanganeh Formations (late Barremian-early Aptian) displayed diverse nannofossil assemblages. Representative species of the following genera were recorded from the Sarcheshmeh Fm.: Braarudosphaera, Calcicalathina, Calciosolenia, Chiastozygus, Conusphaera, Cretarhabdus, Cyclagelosphaera, Eprolithus, Haqius, Hayesites, Lithraphidites, Manivitella, Micrantholithus, Nannoconus, Radiolithus, Retecapsa, Rhagodiscus, Rucinolithus, Watznaueria, and Zeugrhabdotus. In the Sanganeh Formation, Biscutum, Broinsonia, Cribrosphaerella, Crucicribrum, Cyclagellosphaera, Diazomatolithus, Discorhabdus, Eiffellithus, Lithraphidites, Nannoconus, Prediscosphaera, Rhagodiscus, Tranolithus, and Watznaueria were found. The identified nannofossil assemblages enabled the recognition of NC5-NC7A zones in the studied part of the section. Paleoecologically, these nannofossil assemblages are typical for the Lower Cretaceous of the Tethyan realm and indicate warm surface water conditions.  相似文献   

15.
We studied upper Albian to Turonian shallow-marine shelf deposits (Ajlun Group) of west central Jordan along a NNE-SSW running transect. The carbonate-dominated succession includes few siliciclastic intercalations, claystones and shales, and can be subdivided into five formations. The Naur, Fuheis and Hummar Formations of upper Albian to upper Cenomanian age represent shallow subtidal to supratidal platform environments. The uppermost Cenomanian to middle Turonian Shueib Formation includes deeper water deposits of the inner/mid-shelf and locally TOC-rich black shales. Shallow-marine platform environments once again dominate the Wadi As Sir Formation (middle-upper Turonian). A new multibiostratigraphic framework is based on ammonites (mainly of the middle Cenomanian rhotomagense Zone to the middle Turonian woollgari Zone) and calcareous nannofossils (biozones CC 9–CC 11), supplemented by benthic and planktonic foraminifers and ostracods. It forms the base of a sequence stratigraphic subdivision, containing eight sedimentary sequences (S1–S8), which are separated by four Cenomanian sequence boundaries (CeJo1–CeJo4) and three Turonian sequence boundaries (TuJo1–TuJo3). This scheme allows the correlation of the platform succession from distal to proximal shelf areas in contrast to previous correlations using lithologic units. Furthermore, comparisons between the platform successions and sequence patterns of west central Jordan and those from neighbouring areas allow to differentiate local, regional, and global controlling factors of platform development within the study area.  相似文献   

16.
The present study aims to provide carbon-isotope curves for the Cenomanian to Turonian rudist-dominated successions in north Sinai. The high-resolution carbon-isotope curves obtained from north Sinai sections provide new insight for calibrating the age of rudists as well as for evaluating the effects of the oceanic anoxic event 2 (OAE2) on rudist communities. The primary goals are (1) to provide a high-resolution sequence stratigraphic framework for the Cenomanian-Turonian succession, (2) to use rudist and ammonite biostratigraphic data to distinguish the stratigraphic levels of the rudist species, and (3) to integrate the chemostratigraphic (δ13C) profile and the rudist levels to improve the biostratigraphy based on the rudist distributions and the carbon-isotope data. The recognition of three ammonite zones through the Cenomanian-Turonian succession was utilized to identify four temporally significant rudist levels indicative of the Lower Cenomanian, Middle Cenomanian, Upper Cenomanian, and Middle Turonian, respectively. Most of the rudists occur in the highstand deposits of medium-scale sequences. Carbon- and oxygen-isotopic analyses were carried out on both rudists and surrounding carbonate units. Based on the variations in the carbon-isotope signals, 12 chronostratigraphic segments were identified in the studied sections. The Cenomanian carbon-isotope segments (C23–C30) were obtained from the Halal Formation at Gabal Yelleg and Gabal Maaza sections, while the Turonian segments (C30–C34) were measured from the Wata Formation at Gabal Yelleg section. The carbon-isotope record from the studied sections is consistent with the trends documented in previous studies of the Tethyan realm. The Cenomanian-Turonian boundary is placed at the onset of falling carbon-isotope values (δ13C) from 2.61 to ?0.25‰ in the upper part of OAE2 with the carbon-isotope segment C30 at Gabal Yelleg. The negative shift in δ13C values (C33) occurred in the Middle Turonian lowstand deposits characterizing the global sea level fall during this interval.  相似文献   

17.
The Jurassic/Cretaceous boundary interval in the northern hemisphere is characterized by the widespread occurrence of black shales. About 60% of all petroleum source rocks comprise sediments of late Jurassic and early Cretaceous age with the origin of such black shales still under discussion. In order to better understand the factors that controlled black shale sedimentation, 78 samples were analyzed for calcareous nannofossils from two sections (Gorodische, Kashpir) of the Volga Basin (NE Russia). Calcareous nannofossils are ideal proxies for deciphering nutrient, temperature and salinity fluctuations. Additionally 58 samples from both sections were also analyzed for clay mineralogy, 13Corg , TOC and CaCO3 composition. Both sections contain calcareous claystones and intercalated organic rich shales overlain by phosphorite beds. The presence of the calcareous nannofossil species Stephanolithion atmetros throughout both successions allows a biostratigraphic assignment to the S. atmetros Nannofossil Biozone (NJ 17), which corresponds to the Dorsoplanites panderi Ammonite Biozone of the Middle Volgian. The marlstones of the Kashpir section yield a well-preserved rich and diverse nannoflora, whereas all black shale beds are essentially barren of calcareous nannofossils. Only the uppermost black shale layers yield an impoverished assemblage of low diversity and abundance. Geochemical data suggest an early diagenetic nannofossil dissolution in the black shales of the Kashpir section. This is supported by the occurrence of coccoliths in black shale horizons of the Gorodische section. The assemblages in both sections are dominated by coccoliths of the Watznaueriaceae group (Watznaueria barnesae, Watznaueria fossacincta, Watznaueria britannica, Watznaueria communis), Biscutum constans and Zeugrhabdotus erectus. In Kashpir rare specimens of Crucibiscutum salebrosum occur in the higher part of the section. These taxa indicate boreal affinities. B. constans and Z. erectus are considered to be taxa indicative of a higher productive environment, while C. salebrosum is a cool-water species. From base to top of the Kashpir section, consecutive mass occurrences of different taxa/groups were observed: W. barnesae–W. fossacincta acme, W. britannica–W. communis acme, Z. erectus acme, B. constans acme (including sparse occurrences of C. salebrosum).The observed distribution patterns have been interpreted as characterizing a transition from a low productive, oligotrophic setting with high abundances of K-selected cosmopolitan species (Watznaueriaceae) and predominating marlstone sedimentation to a higher productive, mesotrophic setting. Cooler water temperatures marked by r-selection and acmes of opportunistic species (Z. erectus, B. constans) are coincident with the deposition of black shales and phosphorites in the higher part of the section. Interpretation of clay mineral distribution indicates that black shale deposition occurred under semi-arid hinterland climatic conditions concomitant with a sea level rise. This induced dysoxic conditions in the deeper parts of the Volga Basin, favoring the preservation of organic matter. The cause of the nutrient enrichment in the surface water is still unclear, but possible river water input from the continents does not seem to have been the controlling factor under a semi-arid climate. The occurrence of phosphorites in the upper part of both sections presumably indicates that enhanced productivity may be better explained by the upwelling of nutrient-rich bottom water and thereby causing the recycling of nutrients from oxidized phytoplankton back into the photic zone. This recycling effect finally may have led to an intensified phytoplankton growth which seemed to be a sufficient source for the enrichment of organic matter. This is well correlated with the increase in black shale horizons in the upper part of the Kashpir section.  相似文献   

18.
The phylostratigraphy, taphonomy and palaeoecology of the Late Cretaceous neoselachian Ptychodus of northern Germany appears to be facies related. Ptychodus is not present in lower Cenomanian shark-tooth-rich rocks. First P. oweni records seem to relate to middle Cenomanian strata. P. decurrens appears in the middle to upper Cenomanian mainly in non-coastal environments of the shallow marine carbonate ramp and swell facies which isolated teeth were found partly in giant ammonite scour troughs on the Northwestphalian-Lippe High submarine swell in the southern Pre-North Sea Basin. They are recorded rare in deeper basin black shales facies (upwelling influenced, OAE Event II). P. polygyrus seems to be restricted to upwelling influenced basin and deeper ramp facies mainly of the uppermost Cenomanian and basal lower Turonian (OAE II Event). P. mammillaris is mostly represented during the lower to middle Turonian in the inoceramid-rich ramp and the near shore greensand facies along the Münsterland Cretaceous Basin coast north of the Rhenish Massif mainland. Finally, P. latissimus is recorded by two new tooth sets and appears in the upper Turonian basin swell facies and the coastal greensands. Autochthonous post-Turonian Ptychodus remains are unrecorded in the Santonian–Campanian of Germany yet. Reworked material from Cenomanian/Turonian strata was found in early Santonian and middle Eocene shark-tooth-rich condensation beds. With the regression starting in the Coniacian, Ptychodus disappeared in at least the Münster Cretaceous Basin (NW-Germany), but remained present at least in North America in the Western Interior Seaway. The Cenomanian/Turonian Ptychodus species indicate a rapid neoselachian evolution within the marine transgression and global high stand. A correlation between inoceramid shell sizes, thicknesses and their increasing size during the Cenomanian and Turonian might explain the more robust and coarser ridged enamel surfaces in Ptychodus teeth, if Ptychodus is believed to have preyed on epifaunistic inoceramid bivalves.  相似文献   

19.
In the Rhenodanubian Flysch Zone of Austria, between the Aptian–Albian “Gault Flysch” and the Cenomanian–Turonian Reiselsberg Formation, an interval with predominant red shales (“Untere Bunte Schiefer”) occurs. In the Oberaschau section near Attersee (Upper Austria) a ca. 18-m-thick interval of alternating red and grey shales and marlstones with minor sandstones is present. Thin sandstone intercalations are interpreted as distal turbidites. Dinoflagellate cyst assemblages indicate the Litosphaeridium siphoniphorum Zone. The concurrent presence of Litosphaeridium siphoniphorum and Ovoidinium verrucosum in all samples allows a correlation to the lower part of this zone, thus defining a Late Albian–Early Cenomanian age. Based on foraminifera, the red beds can be assigned to the topmost Rotalipora appenninica Zone and the Rotalipora globotruncanoides Zone due to the presence of small morphotypes of the index taxa. Nannofossils indicate standard zones CC9/UC0 throughout the red interval, defined by the first occurrence of Eiffellithus turriseiffelii, and UC1 above the red shales. Based on these multistratigraphic data, a latest Albian–Early Cenomanian age can be inferred.  相似文献   

20.
Environmental and depositional changes across the Late Cenomanian oceanic anoxic event (OAE2) in the Sinai, Egypt, are examined based on biostratigraphy, mineralogy, δ13C values and phosphorus analyses. Comparison with the Pueblo, Colorado, stratotype section reveals the Whadi El Ghaib section as stratigraphically complete across the late Cenomanian–early Turonian. Foraminifera are dominated by high-stress planktic and benthic assemblages characterized by low diversity, low-oxygen and low-salinity tolerant species, which mark shallow-water oceanic dysoxic conditions during OAE2. Oyster biostromes suggest deposition occurred in less than 50 m depths in low-oxygen, brackish, and nutrient-rich waters. Their demise prior to the peak δ13C excursion is likely due to a rising sea-level. Characteristic OAE2 anoxic conditions reached this coastal region only at the end of the δ13C plateau in deeper waters near the end of the Cenomanian. Increased phosphorus accumulations before and after the δ13C excursion suggest higher oxic conditions and increased detrital input. Bulk-rock and clay mineralogy indicate humid climate conditions, increased continental runoff and a rising sea up to the first δ13C peak. Above this interval, a dryer and seasonally well-contrasted climate with intermittently dry conditions prevailed. These results reveal the globally synchronous δ13C shift, but delayed effects of OAE2 dependent on water depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号