首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Polarization observations of the H2O maser emission at 1.35 cm from the active region Orion KL were carried out at epoch 2011.7 on the Svetloe-Zelenchukskaya radio interferometer. The observational data have been processed on the correlator of the QUASAR network. Fragments of the structure have been identified; the line velocities and profile widths and the emission polarization have been determined. The component at the radial velocity V = 7.0 km s?1 has been taken as a reference one. Its effective size in the Gaussian approximation is 1.5 mas, the axial ratio is Major/Minor = 3.3, and the orientation is PA = 11°. The component V = 7.6 km s?1 corresponds to a bipolar outflow with an effective size of 6.2 mas, the axial ratio is Major/Minor = 5.3, and the orientation ?32°. The bipolar outflow is 10 mas away from the reference feature in the direction of 173°. The longitudinal velocity components of the NW and SE parts of the bipolar outflow in the local standard of rest are +0.15 and ?0.15 km s?1, respectively. The degrees of polarization of the emission from the reference feature (7.0 km s?1) and the bipolar outflow are m = 39 and 52%, respectively. The difference in polarization orientations of both components ?? ?? does not exceed 3°.  相似文献   

2.
Polarization measurements of the H2O maser emission from the active region in Orion KL were carried out at epoch 2011?C2012 on the Svetloe-Zelenchukskaya radio interferometer. The bipolar outflow structure and polarized emission parameters have been determined. The emission from the components at v = 7.6 and 7.0 km s?1 dominates in the line profile; the relative contribution of the former component has increased. The velocity of the bipolar outflow ejector region is almost equal to that of the local standard of rest v LSR = 7.65 km s?1, while the velocity of the remote component is v = 7.0 km s?1. The emission from the bipolar outflow is observed at a distance up to 11 mas from the ejector. Its diameter does not exceed 0.3 mas. The outflow orientation in the plane of the sky is ?37°. The outflow velocity components along the line of sight differ by ??v = 0.3 km s?1. The polarization levels of the bipolar outflow and the remote component reach m = 62 and 39%, respectively.  相似文献   

3.
During the period 1979–1999, we investigated the hyperfine structure of the H2O supermaser region located in the core of the molecular cloud OMC-1 in Orion KL. The angular resolution is 0.1 mas, which corresponds to 0.045 AU. The detected structure, which consists of a central object, an accretion disk, a bipolar outflow, and an envelope, corresponds to the initial formation stage of a low-mass star. The accretion disk is at the stage of separation into groups of concentric rings. The bipolar outflow is a neutral, highly collimated jet of accreted material that includes H2O molecules and dust grains in the icy envelope. The injector is a bright compact source with a size <0.05 AU and a brightness temperature Tb≈1017 K. The velocity of the bipolar outflow is v≈10 km s?1. The rotation velocity of the jet is vrot≈1.5 km s?1. The jet has the shape of a conical helix due to the precession of the rotation axis. Occasionally, dense blobs (comet-shaped bullets) are ejected. The envelope amplifies the radio emission from the structures in a ~0.5 km s?1 maser window band with velocities v≈7.65 km s?1 by more than two orders of magnitude.  相似文献   

4.
The space velocities of 200 long-period (P>5 days) classical Cepheids with known proper motions and line-of-sight velocities whose distances were estimated from the period-luminosity relation have been analyzed. The linear Ogorodnikov-Milne model has been applied, with the Galactic rotation having been excluded from the observed velocities in advance. Two significant gradients have been found in the Cepheid velocities, ?W/?Y = ?2.1 ± 0.7 km s?1 kpc?1 and ?V/?Z = 27 ± 10 km s?1 kpc?1. In such a case, the angular velocity of solid-body rotation around the Galactic X axis directed to the Galactic center is ?15 ± 5 km s?1 kpc?1.  相似文献   

5.
We have redetermined the kinematic parameters of the Gould Belt using currently available data on the motion of nearby young (log t < 7.91) open clusters, OB associations, and moving stellar groups. Our modeling shows that the residual velocities reach their maximum values of ?4 km s?1 for rotation (in the direction of Galactic rotation) and +4 km s?1 for expansion at a distance from the kinematic center of ≈300 pc. We have taken the following parameters of the Gould Belt center: R 0 = 150 pc and l 0 = 128°. The whole structure is shown to move relative to the local standard of rest at a velocity of 10.7 ± 0.7 km s?1 in the direction l = 274° ± 4° and b = ?1° ± 3°. Using the derived rotation velocity, we have estimated the virial mass of the Gould Belt to be 1.5 × 106 M .  相似文献   

6.
We analyze the superfine structure of the supermaser H2O emission region in Orion KL over the period 1979–1999. The angular resolution reached 0.1 mas, which corresponds to 0.045 AU at a distance to Orion KL of 450 pc. We determined the velocity of the local standard of rest, VLSR = 7.65 km s?1. The formation of a protostar is accompanied by a structure that consists of an accretion disk, a bipolar outflow, and a surrounding envelope. The disk is at the stage of separation into protoplanetary rings. The disk plane is warped like the brim of a hat. The disk is 27 AU in diameter and ~0.3 AU in thickness. The rings contain ice granules. Radiation and stellar wind sublimate and blow away the water molecules to form halos around the rings, maser rings. The radiation from the rings is concentrated in the azimuthal plane, and its directivity reaches 10?3. The relative velocities of the rings located in the central part of the disk 15 AU in diameter correspond to rigid-body rotation, Vrot = ΩR. The rotation period is T ≈ 170 yr. The injector is surrounded by a toroidal structure 1.2 AU in diameter. The diameter of the injected flow does not exceed 0.05 AU. A highly collimated bipolar outflow with a diameter of ~0.1 AU is observed at a distance as large as 3 AU. Precession of the injector axis with a period of ~10 yr forms a spiral flow structure. The flow velocity is ~10 km s?1. The kinetic energy of the accreting matter and the disk is assumed to be transferred to the bipolar outflow, causing the rotation velocity distribution of the rings to deviate from the Keplerian velocity. The surrounding envelope amplifies the emission from the structure at a velocity of 7.65 km s?1 in a band of ~0.5 km s?1 by more than two orders of magnitude, which determines the supermaser emission.  相似文献   

7.
We have studied the fine structure of the active H2O supermaser emission region in Orion KL with an angular resolution of 0.1 mas. We found central features suggestive of a bipolar outflow, bullets, and an envelope which correspond to the earliest stage of low-mass star formation. The ejector is a bright compact source ≤0.05 AU in size with a brightness temperature T b ?1017 K. The highly collimated bipolar outflow ~30 has a velocity v ej ?10 km s?1, a rotation period of ~0.5 yr, a precession period of ~10 yr, and a precession angle of ~33°. Precession gives rise to a jet in the shape of a conical helix. The envelope amplifies the radio emission from the components by about three orders of magnitude at a velocity v=7.65 km s?1.  相似文献   

8.
Data on the positions, radial velocities, and proper motions of open star clusters and OB stars are used to obtain the rotation curve of the Galaxy fitted by a polynomial in inverse powers of the distances from the Galactic rotation axis. We determine the locations of the corotation region and the inner and outer Lindblad resonances using a previously estimated pattern speed. Based on data for objects of the Carina-Sagittarius and Orion arms, we have determined the distortion amplitudes of the velocity field of the Galactic disk, ?R = ?3.97±4.79 km s?1 and fθ=+13.27±2.57 km s?1.  相似文献   

9.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

10.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

11.
Based on kinematic data on masers with known trigonometric parallaxes and measurements of the velocities of HI clouds at tangential points in the inner Galaxy, we have refined the parameters of the Allen-Santillan model Galactic potential and constructed the Galactic rotation curve in a wide range of Galactocentric distances, from 0 to 20 kpc. The circular rotation velocity of the Sun for the adopted Galactocentric distance R 0 = 8 kpc is V 0 = 239 ± 16 km s?1. We have obtained the series of residual tangential, ΔV θ , and radial, V R , velocities for 73 masers. Based on these series, we have determined the parameters of the Galactic spiral density wave satisfying the linear Lin-Shu model using the method of periodogram analysis that we proposed previously. The tangential and radial perturbation amplitudes are f θ = 7.0±1.2 km s?1 and f R = 7.8±0.7 km s?1, respectively, the perturbation wave length is λ = 2.3±0.4 kpc, and the pitch angle of the spiral pattern in a two-armed model is i = ?5.2° ±0.7°. The phase of the Sun ζ in the spiral density wave is ?50° ± 15° and ?160° ± 15° from the residual tangential and radial velocities, respectively.  相似文献   

12.
We have computed a combined spectroscopic-interferometric orbit for the nearby binary Gliese 600 discovered by us. The orbital period is 2.78 years, and the semimajor axis is 100 mas (0.1″). Its M0 V components are almost identical and have a mass of 0.5M . The mass ratio is uncertain because of the low radialvelocity semiamplitude (7 km s?1) associated with the low orbital inclination (37°). The orbital parallax of the binary (52±11 mas) matches its dynamical and photometric parallaxes but differs significantly from the Hipparcos parallax (44.3±1.6) mas; the latter was probably distorted by the orbital motion that was not taken into account.  相似文献   

13.
Currently available data on the field of velocities V r , V l , V b for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina-Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters ω 0 = ?26.0 ± 0.3 km s?1 kpc?1, ω0 = 4.18 ± 0.17 km s?1 kpc?2, ω0 = ?0.45 ± 0.06 km s?1 kpc?3, the system contraction parameter K = ?2.4 ± 0.1 km s?1 kpc?1, and the parameters of the kinematic center R 0 = 7.4 ± 0.3 kpc and l 0 = 0° ± 1°. The Galactocentric distance R 0 in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5 ± 0.7 and 5.6 ± 0.3 kpc for the samples of young (≤50 Myr) and old (>50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of ≈100 Myr, with the contraction velocity being Kr = ?4.3 ± 1.0 km s?1.  相似文献   

14.
To study the peculiarities of the Galactic spiral density wave, we have analyzed the space velocities of Galactic Cepheids with propermotions from the Hipparcos catalog and line-of-sight velocities from various sources. First, based on the entire sample of 185 stars and taking R 0 = 8 kpc, we have found the components of the peculiar solar velocity (u , v ) = (7.6, 11.6) ± (0.8, 1.1) km s?1, the angular velocity of Galactic rotation Ω0 = 27.5 ± 0.5 km s?1 kpc?1 and its derivatives Ω′0 = ?4.12 ± 0.10 km s?1 kpc?2 and Ω″0 = 0.85 ± 0.07 km s?1 kpc?3, the amplitudes of the velocity perturbations in the spiral density wave f R = ?6.8 ± 0.7 and f θ = 3.3 ± 0.5 km s?1, the pitch angle of a two-armed spiral pattern (m = 2) i = ?4.6° ± 0.1° (which corresponds to a wavelength λ = 2.0 ± 0.1 kpc), and the phase of the Sun in the spiral density wave χ = ?193° ± 5°. The phase χ has been found to change noticeably with the mean age of the sample. Having analyzed these phase shifts, we have determined the mean value of the angular velocity difference Ω p ? Ω, which depends significantly on the calibrations used to estimate the individual ages of Cepheids. When estimating the ages of Cepheids based on Efremov’s calibration, we have found |Ω p ? Ω0| = 10 ± 1stat ± 3syst km s?1 kpc?1. The ratio of the radial component of the gravitational force produced by the spiral arms to the total gravitational force of the Galaxy has been estimated to be f r0 = 0.04 ± 0.01.  相似文献   

15.
Based on RATAN-600 21-cm line observations with an angular resolution of 2.4′ over a wide range of radial velocities, we analyze the neutral-hydrogen distribution in the region of the SNR G78.2+2.1. In addition to an H I shell at low radial velocities immediately surrounding the radio remnant, we detected an extended expanding H I shell, ≈3° in diameter, at a radial velocity of ?25 km s?1, which closely coincides in coordinates and angular sizes with the outer X-ray shell discovered by Lozinskaya et al. (2000). The Hα emission studied by these authors in the SNR region also has a secondary peak at radial velocities from ?45 to ?20 km s?1. Since the radial velocities of these two objects differ significantly, their distances can be assumed to differ as well; i.e., a chance projection of two distinct objects is observed.  相似文献   

16.
17.
We perform a kinematic analysis of the Hipparcos and TRC proper motions of stars by using a linear Ogorodnikov-Milne model. All of the distant (r>0.2 kpc) stars of the Hipparcos catalog have been found to rotate around the Galactic y axis with an angular velocity of M 13 ? =?0.36±0.09 mas yr?1. One of the causes of this rotation may be an uncertainty in the lunisolar precession constant adopted when constructing the ICRS. In this case, the correction to the IAU (1976) lunisolar precession constant in longitude is shown to be Δp1=?3.26±0.10 mas yr?1. Based on the TRC catalog, we have determined the mean Oort constants: A=14.9±1.0 and B=?10.8±0.3 km s?1 kpc?1. The component of the model that describes the rotation of all TRC stars around the Galactic y axis is nonzero for all magnitudes, M 13 ? =?0.86±0.11 mas yr?1.  相似文献   

18.
Based on published data, we have collected information about Galactic maser sources with measured distances. In particular, 44 Galactic maser sources located in star-forming regions have trigonometric parallaxes, proper motions, and radial velocities. In addition, ten more radio sources with incomplete information are known, but their parallaxes have been measured with a high accuracy. For all 54 sources, we have calculated the corrections for the well-known Lutz-Kelker bias. Based on a sample of 44 sources, we have refined the parameters of the Galactic rotation curve. Thus, at R 0 = 8kpc, the peculiar velocity components for the Sun are (U , V , W ) = (7.5, 17.6, 8.4) ± (1.2, 1.2, 1.2) km s?1 and the angular velocity components are ω 0 = ?28.7 ± 0.5 km s?1 kpc?1, ω 0′ = +4.17 ± 0.10 km s?1 kpc?2, and ω0″ = ?0.87 ± 0.06 km s?1 kpc?3. The corresponding Oort constants are A = 16.7 ± 0.6 km s?1 kpc?1 and B = ?12.0 ± 1.0 km s?1 kpc?1; the circular rotation velocity of the solar neighborhood around the Galactic center is V 0 = 230 ± 16 km s?1. We have found that the corrections for the Lutz-Kelker bias affect the determination of the angular velocity ω 0 most strongly; their effect on the remaining parameters is statistically insignificant. Within themodel of a two-armed spiral pattern, we have determined the pattern pitch angle $i = - 6_.^ \circ 5$ and the phase of the Sun in the spiral wave χ 0 = 150°.  相似文献   

19.
The peculiarities of non-Hubble bulk motions of galaxies are studied by analyzing a sample of 1271 thin edge-on spirals with distances determined using a multiparametric Tully-Fisher relation that includes the amplitude of the galaxy rotation, the blue and red diameters, surface brightness, and morphological type. In the purely dipole approximation, the bulk motion of galaxies relative to the cosmic microwave background frame can be described by the velocity of 336±96 km s?1 in the direction l=321°, b=?1° within radius R max =10000 km s?1. An analysis of more complex velocity field models shows that the anisotropy of the Hubble expansion described by the quadrupole term is equal to ~5% on scale lengths R max=6000–10000 km s?1. The amplitude within the Local Supercluster (R max=3000 km s?1) is as high as ~20%. The inclusion of the octupole component reduces the dipole amplitude to 134±111 km s?1 on scale lengths of ~8000 km s?1. The most remarkable feature of the galaxy velocity field within R max=8000 km s?1 is the zone of minimum centered on l=80°, b=0° (the constellation of Cygnus) whose amplitude reaches 18% of the mean Hubble velocity.  相似文献   

20.
We have determined the Galactic rotation parameters and the solar Galactocentric distance R 0 by simultaneously solving Bottlinger’s kinematic equations using data on masers with known line-of-sight velocities and highly accurate trigonometric parallaxes and proper motions measured by VLBI. Our sample includes 73 masers spanning the range of Galactocentric distances from 3 to 14 kpc. The solutions found are Ω0 = 28.86 ± 0.45 km s?1 kpc?1, Ω′0 = ?3.96 ± 0.09 km s?1 kpc?2, Ω″0 = 0.790 ± 0.027 km s?1 kpc?3, and R 0 = 8.3 ± 0.2 kpc. In this case, the linear rotation velocity at the solar distance R 0 is V = 241 ± 7 km s?1. Note that we have obtained the R 0 estimate, which is of greatest interest, from masers for the first time; it is in good agreement with the most recent estimates and even surpasses them in accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号