首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Wave propagation in weakly anisotropic inhomogeneous media is studied by the quasi-isotropic approximation of ray theory. The approach is based on the ray-tracing and dynamic ray-tracing differential equations for an isotropic background medium. In addition, it requires the integration of a system of two complex coupled differential equations along the isotropic ray.
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails.  相似文献   

6.
7.
8.
9.
10.
11.
We have studied the properties of S waves generated by a point source in a homogeneous, transversely isotropic, elastic medium, propagating in directions close to that of a kiss singularity, which coincides with the symmetry axis of the medium. We have proved analytically as well as numerically that the ray solution can describe the S waves correctly far from the source in all directions, including that of the kiss singularity. We have found that, in contrast to the far-field P wave, which can be reproduced satisfactorily by the zeroth-order ray approximation in all directions from the source, the far-field S waves can be reproduced satisfactorily by the zeroth-order ray approximation only in directions far from the kiss singularity. In directions near the kiss singularity, the first-order ray approximation must also be considered, because the zeroth- order ray approximation yields distorted results. The first-order ray approximation can be of high frequency and can be detected in the far field.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Soil salinization, caused by salt migration and accumulation underneath the soil surface, will corrode structures. To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions, a mathematical model consisting of a series of theoretical equations is briefly presented. The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations. Besides, a transition equation to link the solute transport equation before and after salt precipitation is proposed. Meanwhile, a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation. The results show that the calculated values are in good agreement with the published experimental data, especially for the simulation of volume water content and evaporation rate of Toyoura sand, which confirm the reliability and applicability of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号