首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
GPS多普勒频移测量速度模型与误差分析   总被引:10,自引:0,他引:10  
利用GPS多普勒频移观测量可以获得高精度的速度测量结果。文中先给出GPS载波相位观测方程,在此基础上,详细推导了GPS多普勒频移测量载体速度的数学模型。然后在相对测量模式下,讨论各种误差对速度的影响。  相似文献   

2.
利用GPS多普勒观测值精确确定运动载体的速度   总被引:2,自引:0,他引:2  
讨论了利用GPS多普勒频移观测值确定运动载体速度的基本原理,估计了这一方法可以达到的精度。为验证该方法的可靠性及稳定性,做了两个试验:静态试验和动态试验,试验中实测动态数据处理采用VAES软件。理论研究和数据处理结果均表明,在卫星分布较好的情况下,载体速度的确定精度可达mm/s。  相似文献   

3.
通过对GPS原理的分析,结合测量中的实际情况,重点提出在GPS测量过程中如何避免和降低偶然误差对测量的影响  相似文献   

4.
推导了利用伪距观测值获取多普勒频移的公式,并利用导出的多普勒频移来确定载体的速度。实测数据表明,利用伪距导出的多普勒频移测速,可以达到dm/s级的水平。在没有原始多普勒观测值或者相位观测出现了频繁周跳的情况下,可以利用伪距导出的多普勒频移获得载体概略的速度信息。  相似文献   

5.
GPS测量中的误差分析   总被引:1,自引:0,他引:1  
GPS测量应用的广泛开展,使观测精度的影响因素和解决方法成为科学研究工作中的重点。本文论述了GPS测量的各种误差来源及对测量成果的影响程度,并结合实际情况提出了一些消除或减弱措施。  相似文献   

6.
《全球定位系统》2007,32(5):4-4
Fujitsu公司推出一种适用于导航、综合信息技术及跟综业务的模块,这种只有1平方英寸的模块叫做GPS/AGPS芯片,它可安装到到现有的GPS系统中,该模块可捕获和跟踪室内、市区峡谷环境中低于-157.5dBm的信号,并可解译信号电平约为-145dBm的导航数据。这种可测量位置、速度和时间的模块采用了Fujitsu公司生产的MB87Q 2040GPS/AGPS基带处理器,该处理器具有新的解码算法,并可达到44000个有效的相关器。  相似文献   

7.
原始多普勒观测值可以用于测定速度、平滑伪距和周跳的探测,不论在哪个方面使用,都需要了解其精度情况,本文意在用实际测量数据来评价其测量精度,并分析测量精度与卫星高度角的关系。数据分析结果表明,原始多普勒观测值的内附合精度是1-2cm/s,外符合精度是2-3cm/s,可以推断原始多普勒观测值的精度约为2cm/s。另外原始多普勒观测值的误差与卫星高度角有关,高度角越大,误差越小,反之,高度角越小,误差越大,确切关系可以用分段函数来描述。值得说明的是这是一个针对特定试验的精度评价,有一定的参考价值,但是不具有普遍意义。  相似文献   

8.
大气折射是GPS测量中主要的误差源之一,它大大限制了GPS定位特别是单点定位精度的提高,这主要是由于我们对大气的瞬间分布特性及其变化规律还缺乏准确了 解,所以无法找到比较精确的大气折射误差模型。  相似文献   

9.
GPS测量的误差及精度控制   总被引:36,自引:0,他引:36  
介绍了 GPS测量的各种主要误差源和它们的影响。对于精度控制问题 ,主要讨论的是小型控制网 (基线长 10~ 2 0 km) ,局部地区应用的动态和准动态的差分测量。  相似文献   

10.
GPS测量的电离层误差   总被引:3,自引:0,他引:3  
谢世杰 《测绘通报》2001,(12):27-27
  相似文献   

11.
单点GPS多普勒测速模型比较与精度分析   总被引:1,自引:0,他引:1  
讨论GPS单点测速的观测方程,重点讨论基于多普勒频移测速的两种方法,分析其误差来源及对测速精度的影响;然后用静态数据模拟动态测速试验,数据处理采用自编单点测速软件。通过对比分析表明,采用原始多普勒观测值进行测速时因接收机型号的不同,结果差异较大,较差者可达17cm/s左右;而采用高频导出多普勒值进行测速的精度可以达到1cm/s左右,甚至可以达到mm/s量级。  相似文献   

12.
北斗多普勒测速精度的分析   总被引:2,自引:0,他引:2  
介绍了原始多普勒观测值测速方法的数学模型,分析了各误差源对多普勒测速的影响,并使用北斗卫星导航系统实测数据在静态模式下对多普勒测速精度进行了分析。结果表明,目前使用北斗原始多普勒观测值测速精度可优于0.1m/s。  相似文献   

13.
GPS多普勒观测值测速的精度分析   总被引:1,自引:0,他引:1  
讨论了利用多普勒观测值进行单点测速的观测方程,分析了其误差来源和各误差源对测速精度的影响。用自编软件计算了静态和动态条件下GPS测速的精度,其中动态测速的参考速度采用GrafNav Version7.00软件计算得到,比较结果表明在静态和动态条件下测速精度都可以达到cm/s级  相似文献   

14.
分析了利用中心差分法进行GPS定速时的主要误差来源,证明了当数据采样率一定时,增加中心差分法的点数可减少微分过程中的截断误差,但同时会放大导出相位率的观测误差,得出中心差分法的最佳点数应使这两种误差之和最小的结论。实验结果表明,当数据采样间隔为1s、载体平均速度和加速度为20m.s-1和0.2m.s-2时,9个点的中心差分法定速精度最高。  相似文献   

15.
GPS单点测速的误差分析及精度评伤   总被引:1,自引:0,他引:1  
首先从理论和实测数据模拟两方面分析了sA取消后各类误差源对GPS测速的影响,推导并计算了GPs单点测速可能达到的精度水平.然后用静态数据模拟动态测速试验和实测动态数据测速与同步高精度惯导测速的动态试验进行验证.结果表明,采用栽波相位导出的多普勒观测值使用静态数据模拟动态测速,其精度可以达到mm/s级;用接收机输出的多普勒观测值进行测速时,其精度为cm/s级.在动态测速试验中,GPS单点测速方法(即多普勒观测值测速与导出多普勒观测值测速)间的符合精度达到cm/s级,与高精度的惯导测速结果的符合精度为dm/s级,而且和运动载体的动态条件(如加速度和加速度变化率的大小)具有很强的相关性.  相似文献   

16.
用双频GPS观测值建立小区域电离层延迟模型研究   总被引:23,自引:4,他引:19  
介绍了用双频GPS伪距观测值建立区域性电离层模型的基本原理和方法。模型的初步结果表明,该电离层模型建立后,可为覆盖区域内的广大单频用户提供在天顶方向优于0.4m精度的电离层延迟改正量,且具有30min以内天顶方向优于0.4m的预报精度。  相似文献   

17.
The Doppler effect is the apparent shift in frequency of an electromagnetic signal that is received by an observer moving relative to the source of the signal. The Doppler frequency shift relates directly to the relative speed between the receiver and the transmitter, and has thus been widely used in velocity determination. A GPS receiver-satellite pair is in the Earth’s gravity field and GPS signals travel at the speed of light, hence both Einstein’s special and general relativity theories apply. This paper establishes the relationship between a Doppler shift and a user’s ground velocity by taking both the special and general relativistic effects into consideration. A unified Doppler shift model is developed, which accommodates both the classical Doppler effect and the relativistic Doppler effect under special and general relativities. By identifying the relativistic correction terms in the model, a highly accurate GPS Doppler shift observation equation is presented. It is demonstrated that in the GPS “frequency” or “velocity” domain, the relativistic effect from satellite motion changes the receiver-satellite line-of-sight direction, and the measured Doppler shift has correction terms due to the relativistic effects of the receiver potential difference from the geoid, the orbit eccentricity, and the rotation of the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号