首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Heck and Heckle are seamount chains trending approximately northwest on the western flank of Juan de Fuca Ridge near its northern end. Evidence from magnetic anomalies and from chemistry and relative ages of dredged basalt suggests that the seamounts in these chains are produced near the spreading centre on Juan de Fuca Ridge and do not continue to grow as they are carried away by sea-floor spreading. Their development is possibly related to transverse fractures on Juan de Fuca Ridge resulting from reorientation of the ridge from north to north-northeast which began about 8 m.y. ago, combined with tension in the Pacific Plate. In contrast the Eickelberg Chain to the south may have been produced by a fixed-mantle plume now located near Juan de Fuca Ridge, as suggested by limited basalt geochemistry and by the long and productive life of that chain. The Pratt-Welker Chain may also have been produced by a mantle plume, but most other seamounts on the western flanks of Juan de Fuca and Explorer ridges are thought to have formed at crustal fractures near the spreading centres in the same way as the seamounts of the Heck and Heckle chains.  相似文献   

2.
The Blanco Fracture Zone, which connects the Juan de Fuca and Gorda ridges, is structurally complex and contains numerous pull-apart basins and accretion centres. It terminates at its western end in two troughs where the Juan de Fuca Ridge progressively dies out. This unusual structure is studied in detail using bathymetric analysis which allows the fault pattern to be determined. The method developed to extract structural information involves numerical treatment of the gridded bathymetry derived from image processing methods. The detailed mapping of the fault pattern shows that the active zone corresponds to a N100° E strike-slip zone which connects the southern end of the Juan de Fuca Ridge with the northeastern edge of the Blanco Trough, via the northwestern wall of the Parks Plateau. The present day direction of the active zone comes after a previous one trending at N115° E, apparently within the same area. The Parks Plateau results from a jump of the plate boundary from the southern to northern limits of the plateau. Deformation over the past 2 Ma results from a northeastward displacement of the junction between the transform zone and the ridge.  相似文献   

3.
From July to November 1988, a major electromagnetic (EM) experiment, known as EMRIDGE, took place over the southern end of the Juan de Fuca Ridge in the northeast Pacific. It was designed to complement the previous EMSLAB experiment which covered the entire Juan de Fuca Plate, from the spreading ridge to subduction zone. The principal objective of EMRIDGE was to use natural sources of EM induction to investigate the processes of ridge accretion. Magnetotelluric (MT) sounding and Geomagnetic Depth Sounding (GDS) are well suited to the study of the migration and accumulation of melt, hydrothermal circulation, and the thermal evolution of dry lithosphere. Eleven magnetometers and two electrometers were deployed on the seafloor for a period of three months. Simultaneous land-based data were made available from the Victoria Magnetic Observatory, B.C., Canada and from a magnetometer sited in Oregon, U.S.A.Changes in seafloor bathymetry have a major influence on seafloor EM observations as shown by the orientation of the real GDS induction arrows away from the ridge axis and towards the deep ocean. Three-dimensional (3D) modelling, using a thin-sheet algorithm, shows that the observed EM signature of the Juan de Fuca Ridge and Blanco Fracture Zone is primarily due to nonuniform EM induction within the ocean, associated with changes in ocean depth. Furthermore, if the influence of the bathymetry is removed from the observations, then no significant conductivity anomaly is required at the ridge axis. The lack of a major anomaly is significant in the light of evidence for almost continuous hydrothermal venting along the neo-volcanic zone of the southern Juan de Fuca Ridge: such magmatic activity may be expected to have a distinct electrical conductivity signature, from high temperatures, hydrothermal fluids and possible melt accumulation in the crust.Estimates of seafloor electrical conductivity are made by the MT method, using electric field records at a site 35 km east of the ridge axis, on lithosphere of age 1.2 Ma, and magnetic field records at other seafloor sites. On rotating the MT impedance tensor to the principal axis orientation, significant anisotropy between the major (TE) and minor (TM) apparent resistivities is evident. Phase angles also differ between the principal axis polarisations, and TM phase are greater than 90° at short periods. Thin-sheet modelling suggests that bathymetric changes accounts for some of the observed 3D induction, but two-dimensional (2D) electrical conductivity structure in the crust and upper mantle, aligned with the ridge axis, may also be present. A one-dimensional (1D) inversion of the MT data suggests that the top 50 km of Earth is electrically resistive, and that there is a rise in conductivity at approximately 300 km. A high conductivity layer at 100 km depth is also a feature of the 1D inversion, but its presence is less well constrained.  相似文献   

4.
Gorda Ridge is the southern segment of the Juan de Fuca Ridge complex, in the north-east Pacific. Along-strike spreading-rate variation on Gorda Ridge and deformation of Gorda Plate are evidence for compression between the Pacific and Gorda Plates. GLORIA sidescan sonographs allow the spreading fabric associated with Gorda Ridge to be mapped in detail. Between 5 and 2 Ma, a pair of propagating rifts re-orientated the northern segment of Gorda Ridge by about 10° clockwise, accommodating a clockwise shift in Pacific-Juan de Fuca plate motion that occurred around 5 Ma. Deformation of Gorda Plate, associated with southward decreasing spreading rates along southern Gorda Ridge, is accommodated by a combination of clockwise rotation of Gorda Plate crust, coupled with left-lateral motion on the original normal faults of the ocean crust. Segments of Gorda Plate which have rotated by different amounts are separated by narrow deformation zones across which sharp changes in ocean fabric trend are seen. Although minor lateral movement may occur on these NW to WNW structures, no major right-lateral movement, as predicted by previous models, is observed.  相似文献   

5.
An important application of detailed bathymetric mapping is the interpretation of geological processes based on the nature of the fine-scale morphology of the seafloor. This interpretation is usually accomplished through qualitative analysis of contour maps. In this paper, an objective classification technique, based on a two-dimensional spectral model of bathymetry developed by Fox and Hayes (1985) is applied to detailed Sea Beam data from the Juan de Fuca Ridge. Parameters of the model can be directly related to seafloor properties corresponding to 1) isotropic (non-directionally dependent) roughness; 2) anisotropic (directionally dependent) roughness; 3) orientation of the anisotropic component; and 4) spectral rool-off ( fractal dimension), by fitting the model surface to two-dimensional amplitude spectra of bathymetry determined on a regular grid over the study area. A test area was selected which encompasses the southern volcanic rift zone of Axial Volcano and the northern terminus of the Vance Segment. Parameters of the model clearly define the contrast between the constructional volcanic terrain (rough, isotropic, with high fractal dimension) and the tectonic extensional terrain (smoother, anisotropic, with low fractal dimension). An agglomerative, hierarchical cluster analysis is applied to the data, independent of spatial information, to delineate groups of spectra with similar characteristics. Distinct, mappable regions, corresponding to volcanic and tectonic provinces, are objectively determined. Also, coherent sub-regions of consistent spectral properties occur within the larger volcanic/tectonic divisions. The classification is extended to the Juan de Fuca Ridge system from 44°30 N to 47°20 N through combining these results with an a priori technique (K-means clustering). Broad-scale physiographic regions of the Juan de Fuca Ridge are delineated by the technique, which may aid geologists in the interpretation of crustal accretion processes at seafloor spreading centers.The U.S. Government right to retain a non-exclusive royaltyfree license in and to any copyright is acknowledged.  相似文献   

6.
An analysis of T-phase source locations determined in the mid-1960s for an area of the northeast Pacific Ocean encompassing the Juan de Fuca spreading center reveals that most of the source locations are associated with regions where seamount chains intersect the spreading center and with edifices both along and near the spreading center. The T-phase source locations also tend to cluster on, or near, areas of the most concentrated and vigorous hydrothermal venting along the Juan de Fuca Ridge. Of the 58 T-phase source locations determined for a period from October 1964 through December 1966, only one was found to be associated with an earthquake detected by the National Geophysical Data Center/National Earthquake Information Service because of the characteristic small magnitude of spreading-center seismic events. Monitoring T-phase activity originating along the 80 000 km-long global seafloor spreading-center system offers a practical and unique opportunity to better understand the dynamics and oceanic effects of episodic spreading-center tectonic, volcanic, and hydrothermal processes.  相似文献   

7.
The External Calabrian Arc is located off the convex side of the Calabro-Peloritanian Arc in the northern Ionian Sea. A systematic reflection seismic survey indicates that it is made of different structural elements whose characters seem consistent with an active accretionary margin. The main structures are the Crotone-Spartivento slope (comparable to an inner trench slope) and the intermediate depressions (comparable to a trench area). Internal to these elements, the Crotone-Spartivento basin may represent a fore-arc basin. This partly outcrops in Calabria and its structure suggests that the accretionary margin developed at least since middle-upper Miocene.Subduction processes do not affect a true oceanic crust, because of the great thickness of sediments covering the whole eastern Mediterranean. Hence some peculiar features occur in the system. as the cobblestone topography, or are lacking, as a typical and continuous trench zone.In the areas with cobblestone topography we distinguish a Calabrian Ridge sensu stricto from a Calabrian Ridge sensu lato. The former is a N-S trending swell, external to the supposed trench zone, interpreted as a sedimentary outer-arc ridge produced by rather surficial tectonic accumulation of sediments further chaoticized by gravitative mechanisms. The Ridge s.l. is a very wide area with low relief and little or no seismic penetration. Tectonization seems gentler than in the Ridge s.s. and structural axes seem to possess different orientations. These areas are interpreted as due to a widespread surficial chaoticization above presumed decollement layers occurring within the sedimentary column of the Ionian bathyal plain.The pattern of deformations of the Calabrian Ridge seems consistent with the Calabro-Peloritanian Arc actively overriding the eastern Mediterranean, with a resultant direction of movement essentially towards the East.  相似文献   

8.
Bowers Swell is a newly discovered bathymetric feature which is up to 90 m high, between 12 and 20 km wide, and which extends arcuately about 400 km along the northern and eastern sides of Bowers Ridge. The swell was first revealed on GLORIA sonographs and subsequently mapped on seismic reflection and 3.5 kHz bathymetric profiles. These geophysical data show that the swell caps an arcuate anticlinal ridge, which is composed of deformed strata in an ancient trench on the northern and eastern sides of Bowers Ridge. The trench fill beneath the swell is actively deforming, as shown by faulting of the sea floor and by thinning of the strata across the crest of the swell. Thinning and faulting of the trench strata preclude an origin for the swell by simple sediment draping over an older basement high. We considered several models for the origin of Bowers Swell, including folding and uplift of the underlying trench sediment during the interaction between the Pacific plate beneath the Aleutian Ridge and a remnant oceanic slab beneath Bowers Ridge. However, such plate motions should generate extensive seismicity beneath Bowers Ridge, which is aseismic, and refraction data do not show any remnant slab beneath Bowers Ridge. Another origin considered for Bowers Swell invokes sediment deformation resulting from differential loading and diapirism in the trench fill. However, diapirism is not evident on seismic reflection profiles across the swell. We favour a model in which sediment deformation and swell formation resulted from a few tens of kilometers of low seismicity motion by intraplate crustal blocks beneath the Aleutian Basin. This motion may result from the translation of blocks in western Alaska to the south-west, forcing the movement of the Bering Sea margin west of Alaska into the abyssal Aleutian Basin.  相似文献   

9.
选取胡安·德富卡洋脊(Juan de Fuca Ridge,JDFR)因代沃(Endeavour)段的17个热液黑烟囱体样品对其中的硫同位素进行分析测定,讨论了因代沃段热液活动区内黑烟囱体成矿的物质来源、将硫同位素数据与已发表的热液流体及硫化物数据耦合,并结合前人的成果得到如下认识:(1)因代沃段硫化物的硫同位素组成与其他无沉积物覆盖的洋脊硫化物硫同位素组成相似,然而其相比于南胡安·德富卡洋脊(South Juan de Fuca Ridge,SJFR)硫化物亏损重同位素;(2)结合前人研究成果,如果SJFR硫化物的硫全部来自基底玄武岩的淋洗与海水中的硫酸盐,那么因代沃段硫化物的硫可能有1%~3%来自沉积物的贡献,故提出因代沃段成矿系统中的硫来源主要来自基底玄武岩,同时伴随有少量海水硫酸盐来源及沉积物来源的硫加入;(3)将硫同位素数据与已发表的热液流体及硫化物数据进行耦合发现热液流体中的沉积物信号与硫化物中的硫可能来自不同的源,并提出沉积物端元可能位于下渗区。  相似文献   

10.
选取胡安.德富卡洋脊(Juan de Fuca Ridge,JDFR)因代沃(Endeavour)段的17个热液黑烟囱体样品对其中的硫同位素进行分析测定,讨论了因代沃段热液活动区内黑烟囱体成矿的物质来源、将硫同位素数据与已发表的热液流体及硫化物数据耦合,并结合前人的成果得到如下认识:(1)因代沃段硫化物的硫同位素组成与其他无沉积物覆盖的洋脊硫化物硫同位素组成相似,然而其相比于南胡安.德富卡洋脊(South Juan de Fuca Ridge,SJFR)硫化物亏损重同位素;(2)结合前人研究成果,如果SJFR硫化物的硫全部来自基底玄武岩的淋洗与海水中的硫酸盐,那么因代沃段硫化物的硫可能有1%~3%来自沉积物的贡献,故提出因代沃段成矿系统中的硫来源主要来自基底玄武岩,同时伴随有少量海水硫酸盐来源及沉积物来源的硫加入;(3)将硫同位素数据与已发表的热液流体及硫化物数据进行耦合发现热液流体中的沉积物信号与硫化物中的硫可能来自不同的源,并提出沉积物端元可能位于下渗区。  相似文献   

11.
12.
The Mediterranean Ridge is an arcuate ridge of deformed sediment caught up in the convergent plate margin between the African plate and the Aegean. An intensive campaign of SeaMARC I and SeaBeam surveys followed by piston coring has been conducted along the contact between undeformed turbidites of the Sirte Abyssal Plain and folded and faulted sediments of the Mediterranean Ridge. Along the outer edge of the Ridge, surficial sediments have been deformed into sinusoidal ridges and troughs (wavelengths 0.5–2 km, amplitude 20–150 m), which we interpret as folds. In plan view, the ridge and the trough fabric parallels the NW-SE trending regional contours, suggesting that the folds formed in response to compression orthogonal to the Mediterranean Ridge. The outermost ridge is shedding a debris apron out onto the abyssal plain, implying that uplift and deformation are ongoing. We show that the geometry of the outermost folds can be produced by elastic bending of a packet of 5–10 relatively strong layers, each 10–20 m thick, interbedded between weaker layers; we equate the strong layers with gypsum beds in the Messinian upper evaporites. Folding the seafloor from a flat layer into the observed ridge and trough topography would shorten the layer by less than 2%. Two percent shortening (equals two percent thickening) is insufficient to create the observed relief of the Mediterranean Ridge even if the entire sediment column down to basement were involved; we infer that additional shortening/thickening is accommodated by thrust faulting above a decollement at the top of the Messinian salt layer. At distances > 15 km from the deformation front and more than 500 m from the abyssal plain, sharp-edged, fine-grained side-scan lineations with very little vertical relief cut across the kilometer-scale ridge and trough topography. These fine-grained lineations fall in two groups trending N/S to NNE/SSW and ~ENE. We interpret these lineaments as traces of conjugate strike-slip faults formed in the same compressional regime which formed the NW/SE trending folds. The onset of strike-slip faulting may coincide with the cessation of imbricate thrust fan development above the initial salt-controlled decollement surface. The following characteristics of the Mediterranean Ridge are attributed to the presence of evaporites in the incoming sedimentary section: (1) initial deformation by folding rather than thrust faulting; (2) narrow taper; (3) rapid rate of outward growth; (4) karstification.  相似文献   

13.
In July 2000, an array of instruments called acoustic extensometers was deployed at the Cleft segment of the southern Juan de Fuca Ridge, a seafloor observatory site selected by the National Science Foundation RIDGE Program. These instruments are designed to precisely measure horizontal deformation across the axis of a mid-ocean ridge in order to detect and quantify seafloor spreading events. The instruments were deployed in semipermanent seafloor benchmarks in a linear array that is 1.2-km long and spans the floor of the axial valley. The instruments make daily measurements of distance to their neighbors in the array by recording the round trip travel time of 100-kHz acoustic pulses, and simultaneous temperature measurements are used to correct the ranges for sound speed variations. The instruments are expected to have lifetimes of at least five years. In addition, precise pressure measurements have been made at each benchmark with a remotely operated vehicle in order to monitor for vertical deformation across the array. Preliminary results show that the resolution of the acoustic measurements is ±1-2 cm and that no abrupt deformation events occurred during the first year  相似文献   

14.
Transparent exopolymer particles (TEP) have recently been recognized as a class of sticky particles that often stimulate macroaggregate formation. Until now, TEP studies were focused on surface waters, particularly in association with diatom blooms. This is the first report of TEP concentrations in an open ocean deep-sea hydrothermal plume environment. The occurrence of TEP in deep water demonstrates its existence in an environment that is devoid of growing phytoplankton, the organisms generally regarded as TEP's primary source. The main objective of this study was to investigate the presence and potential abundance of TEP within hydrothermal plumes over the Juan de Fuca Ridge. Samples for TEP and bacteria were collected from CTD-rosette casts through hydrothermal plumes over the Juan de Fuca Ridge during the summers of 1999 and 2000. Concentrations of TEP and bacteria within the hydrothermal plumes were significantly greater than in background seawater. TEP number and volume concentrations reported here are low compared to reported values for shallow environments, but are substantially higher than published reports of TEP in other deep water environments. Ratios of TEP anomalies to temperature anomalies (a conservative hydrothermal tracer) increased with distance from the apparent plume source, suggesting that TEP are produced within the aging hydrothermal plumes. Potential TEP sources associated with hydrothermal plumes are discussed. TEP in hydrothermal plumes could stimulate in situ aggregate formation, support populations of attached bacteria, and serve as a potential food source to zooplankton.  相似文献   

15.
Abstract

We evaluate a set of current measurements done in a section of the Strait of Juan de Fuca. The flow is of estuarine character, the upper layer flow usually being directed seaward. The RMS value of steady current exceeds its mean value appreciably in the upper layer; it also exceeds the mean near the bottom. The near‐surface currents do change their direction on occasions and can run landward for over five consecutive days, especially in the southern part of the channel. The lower layer flow (landward) and the upper layer flow (seaward) varied in magnitude from 90 to 160 thousand m3/sec, and their fluctuations were in phase; their difference, the net flow, is of the order of 5% to 10% of these flows and could not be calculated with any confidence. Tidal motion is barotropic in the section, with some deformation in the vertical caused by bottom friction and internal stresses. The M2 tide in the system Juan de Fuca‐Georgia Strait can be represented by a standing Kelvin wave influenced by friction. The K1 tide can also be represented by a standing Kelvin wave if some leakage is allowed in the northern end of Georgia Strait. Topographic effects mask the Coriolis influence on the intensity of tidal currents.  相似文献   

16.
The Woodlark triple junction region, a topographically and structurally complex triangular area of Quaternary age, lies east of Simbo Ridge and southwest of the New Georgia island group, Solomon Islands, at the junction of the Pacific, Australian and Solomon Sea plates. SeaMARC II side-scan imagery and bathymetry in conjunction with seismic reflection profiles, 3.5 kHz records, and petrologic, magnetic and gravity data show that the active Woodlark spreading centre does not extend into this region.South of the triple junction region, the Woodlark spreading centre reoriented at about 2 Ma into a series of short ESE-trending segments. These segments continued to spread until about 0.5 Ma, when the lithosphere on their northern sides was transferred from the Solomon Sea plate to the Australian plate. Simultaneously the Simbo transform propagated northwards along the western side of the transferred lithosphere, forming a trench-trench-transform triple junction located NNW of Simbo island and a new leaky plate boundary segment that built Simbo Ridge.As the Pacific plate approached, the area east of northern Simbo Ridge was tilted northwards, sheared by dominantly right-lateral faults, elevated, and intruded by arc-related magmas to form Ghizo Ridge. Calc-alkalic magmas sourced beneath the Pacific plate built three large strato-volcanic edifices on the subducting Australian plate: Simbo at the northern end of Simbo Ridge, and Kana Keoki and Coleman seamounts on an extensional fracture adjoining the SE end of Ghizo Ridge.A sediment drape, supplied in part from Simbo and Kana Keoki volcanoes, mantles the east-facing slopes of northern Simbo and Ghizo Ridges and passes distally into sediment ponded in the trench adjoining the Pacific plate. As a consequence of plate convergence, parts of the sediment drape and pond are presently being deformed, and faults are dismembering Kana Keoki and Coleman seamounts.The Woodlark system differs from other modern or Tertiary ridge subduction systems, which show wide variation in character and behaviour. Existing models describing the consequences of ridge subduction are likely to be predictive in only a general way, and deduced rules for the behaviour of oceanic lithosphere in ridge subduction systems may not be generally applicable.  相似文献   

17.
Bathymetry and backscatter measurements from a 120-kHz phase-difference sonar are analysed in terms of statistical and spectral characteristics. Data from a multisensor, multiscale survey of the Juan de Fuca Ridge are compared across three distinct geological provinces: sediment pond, ridge flank, and axial valley. The detrended bathymetry follows a Gaussian distribution; the power spectral density can be approximately described by a power law. The composite multiscale power spectrum demonstrates a similar slope spanning a spatial frequency range from about 0.005 to 50 cycles/m, corresponding to a range of geological features from a few hundred meters down to several centimeters. The backscattering strength and grazing-angle dependencies agree with previous empirical studies; data from a sediment-pond region are shown to match theoretical predictions of the composite-roughness model. Histograms of the echo amplitude are characterized by a multimodal Rayleigh probability density function. For all analyses, the data show distinct differences among the three provinces  相似文献   

18.
Full-coverage multibeam bathymetric maps of the southern section of the Juan de Fuca Plate, also known as the Gorda Plate, are presented. The bathymetric maps represent the compilation of multibeam surveys conducted by the National Oceanic and Atmospheric Administration during the last 20 yrs, and illustrate the complex tectonic, volcanic, and geomorphologic features as well as the intense deformation occurring within this region. The bathymetric data have revealed several major, previously unmapped midplate faults. A series of gently curving faults are apparent in the Gorda Plate, with numerous faults offsetting the Gorda Plate seafloor. The multibeam surveys have also provided a detailed view of the intense deformation occurring within the Gorda Plate. A preliminary deformation model estimated from basement structure is discussed, where the southern part of the plate (south of ∼42°30′ N) seems to be deforming through a series of left-lateral strike-slip faults, while the northern section appears to be moving passively with the rest of the Juan de Fuca Plate. The bathymetry also demonstrates the Mendocino and Eel Canyons are prominent morphologic features in the northern California margin. These canyons are active depositional features with a large sediment fan present at the mouths of both the Mendocino and Eel canyons. The depositional lobes of these fan(s) are evident in the bathymetry, as are the turbidite channels that have deposited sediment along the fans over time. The Trinidad Canyon is readily evident in the margin morphology as well, with a large (∼10 km) plunge pool formed at the mouth of the canyon as it enters the Gorda Plate sediments. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
Abstract

It is clear from morphology alone that distinctly different dynamic and sedimentary processes can be expected to be associated with the Greater Antilles Outer Ridge relative to those of the adjacent Nares Abyssal Plain. This difference is further substantiated by seismic reflection data which show the ridge to be a very large prism of acoustically transparent sediment in contrast to the stratified deposits of the abyssal plain. An examination of the geotechnical properties of the near‐surface (0 to 2.4m) deposits of the two areas also reveals distinct differences in their sedimentological characteristics. The outer ridge sediments, of more or less homogenous clay‐size material, display much higher water contents, porosities, sensitivities, plasticity, and organic carbon contents in contrast to the abyssal plain deposits which are much less homogenous owing to the presence of turbidite sequences. The turbidites themselves are uniquely contrasted to the other abyssal plain sediments by their higher silt content, wet bulk density, shear strength, and sensitivity.  相似文献   

20.
Seismic-reflection profile investigations of the California continental terrace and Deep Plain, between 35°N and 39°N, support the hypothesis that the continental shelf and slope consist of alternating blocks of Franciscan and granitic-metamorphic basement overlain by varying thicknesses of younger sediments. North of 37°N, the seismic profiles confirm the distribution of turbidites shown by other workers. A significant proportion of the sediments on the middle and lower continental rise, south of 37°N, appears to be unrelated to the present Monterey deep-sea canyon system.Near 39°N the ridge which forms the topographic axis of the Delgada deep-sea fan consists of a thin cover of acoustically-transparent sediment unconformably overlying a thick sequence of turbidites; the southern part of this ridge is composed of well-defined short reflectors of highly variable dip. The ridge is incised by a steep-walled, flat-floored valley which follows a nearly straight course across its eastern flank. Among possible explanations for this pattern is uplift of the sea floor beneath the ridge.Our data and investigations of others indicate that acoustic basement north of 38°40N is at least 0.5 sec (two-way travel time) shoaler than it is south of Pioneer Ridge; when present, the ridge may represent as much as 0.5 sec additional basement relief. This structural pattern probably does not extend east of 127°40W, although the magnetic expression of the ridge persists to 127°W.Disappearance of the distinctive abyssal hills topography from west to east within the area of investigation usually can be attributed to burial by turbidites. Normal pelagic sediments form a veneer, rarely more than 0.15 sec thick, which conforms with the basement topography; some localities are devoid of discernible sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号