共查询到20条相似文献,搜索用时 15 毫秒
1.
ZHENG Yonghong 《中国海洋工程》2001,(2):185-194
The original hyperbolic mild-slope equation can effectively take into account the combined effects of wave shoaling, refraction, diffraction and reflection, but does not consider the nonlinear effect of waves, and the existing numerical schemes for it show some deficiencies. Based on the original hyperbolic mild-slope equation, a nonlinear dispersion relation is introduced in present paper to effectively take the nonlinear effect of waves into account and a new numerical scheme is proposed. The weakly nonlinear dispersion relation and the improved numerical scheme are applied to the simulation of wave transformation over an elliptic shoal. Numerical tests show that the improvement of the numerical scheme makes efficient the solution to the hyperbolic mild-slope equation. A comparison of numerical results with experimental data indicates that the results obtained by use of the new scheme are satisfactory. 相似文献
2.
Efficient Numerical Solution of the Modified Mild-Slope Equation 总被引:11,自引:1,他引:11
An efficient numerical model for wave refraction,diffraction and reflection is presented in thispaper.In the model,the modified time-dependent mild-slope equation is transformed into an evolutionequation and an improved ADI method involving a relaxation factor is adopted to solve it.The methodhas the advantage of improving the numerical stability and convergence rate by properly determining therelaxation factor.The range of the relaxation factor making the differential scheme unconditionally stableis determined by stability analysis.Several verifications are performed to examine the accuracy of the pres-ent model.The numerical results coincide with the analytic solutions or experimental data very well,andthe computer time is reduced. 相似文献
3.
For the simulation of the nonlinear wave propagation in coastal areas with complex boundaries,a numerical model is developed in curvilinear coordinates. In the model,the Boussinesq-type equations including the dissipation terms are employed as the governing equations. In the present model,the dependent variables of the transformed equations are the free surface elevation and the utility velocity variables,instead of the usual primitive velocity variables. The introduction of utility velocity variables which... 相似文献
4.
LI Ruijie WANG Houjie
Dr. Associate Professor Engineering College of Ocean University of Qingdao Qingdao P. R. China
Ph. D. Candidate Engineering College of Ocean University of Qingdao Qingdao P. R. China 《中国海洋工程》1999,(3)
Nonlinear effect is of importance to waves propagating from deep water to shallow water.Thenon-linearity of waves is widely discussed due to its high precision in application.But there are still someproblems in dealing with the nonlinear waves in practice.In this paper,a modified form of mild-slope equa-tion with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation.The modified form of mild-slope equation is convenient to solvenonlinear effect of waves.The model is tested against the laboratory measurement for the case of a submergedelliptical shoal on a slope beach given by Berkhoff et al,The present numerical results are also comparedwith those obtained through linear wave theory.Better agreement is obtained as the modified mild-slope e-quation is employed.And the modified mild-slope equation can reasonably simulate the weakly nonlinear ef-fect of wave propagation from deep water to coast. 相似文献
5.
A finite-difference approach is used to develop a time-dependent mild-slope equation incorporating the effects of bottom dissipation and nonlinearity.The Euler predictor-corrector method and the three-point finite-difference method with varying spatial steps are adopted to discretize the time derivatives and the two-dimensional horizontal ones,respectively,thus leading both the time and spatial derivatives to the second-order accuracy.The boundary conditions for the present model are treated on the basis of the general conditions for open and fixed boundaries with an arbitrary reflection coefficient and phase shift.Both the linear and nonlinear versions of the numerical model are applied to the wave propagation and transformation over an elliptic shoal on a sloping beach,respectively,and the linear version is applied to the simulation of wave propagation in a fully open rectangular harbor.From comparison of numerical results with theoretical or experimental ones,it is found that they are in reasonable agreement. 相似文献
6.
An Extended Mild-Slope Equation 总被引:1,自引:0,他引:1
PAN Junning 《中国海洋工程》2000,14(4):459-471
On the assumption that the vortex and the vertical velocity component of the current aresmall,a mild-slope equation for wave propagation on non-uniform flows is deduced from the basichydrodynamic equations,with the terms of (V_hh)~2 and (V_h~2)h included in the equation.The terms of bot-tom friction,wind energy input and wave nonlinearity are also introduced into the equation.The wind en-ergy input functions for wind waves and swells are separately considered by adopting Wen′s(1989)empiri-cal formula for wind waves and Snyder′s observation results for swells.Thus,an extended mild-slope equa-tion is obtained,in which the effects of refraction,diffraction,reflection,current,bottom friction,wind en-ergy input and wave nonlinearity are considered synthetically. 相似文献
7.
Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results. 相似文献
8.
在曲线坐标系下,建立了缓变水深水域波浪传播的数值模拟模型.模型适宜于复杂变化的边界形状,克服了各种代数坐标变换的局限性.在建立模型时,将原始的椭圆型缓坡方程的近似型式——依赖时间变化的抛物型方程,作为控制方程,既克服了一般抛物近似方法的缺点,又便利了方程的求解;从开边界条件、不同反射特性的固壁边界条件相统一的表达式出发,对边界条件进行处理;用ADI法数值求解控制方程.对模型的验证表明,数值解与物模实验值吻合良好,模型对于具有复杂边界的工程实际有较强的适应性. 相似文献
9.
In this paper, the water waves and wave-induced longshore currents in Obaky coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions. 相似文献
10.
ZHENG Yonghong 《中国海洋工程》2000,14(4):495-502
A new method for the calculation of wave radiation stress is proposed by linking the expres-sions for wave radiation stress with the variables in the parabolic mild slope equation.The governing equa-tions are solved numerically by the finite difference method.Numerical results show that the new methodis accurate enough,can be efficiently solved with little programming effort,and can be applied to the calcu-lation of wave radiation stress for large coastal areas. 相似文献
11.
12.
在近岸缓坡浅水海岸,波浪破碎产生沿岸流是近岸海域流场的重要组成部分,它对污染物输移扩散规律的影响重大,在高阶近似抛物化缓坡方程求解大面积波浪场基础上,建立了波浪作用下污染物输移扩散数学模型.计算结果与不同坡度均匀斜坡地形上具有不同波高、周期的规则波及不规则波浪作用下污染物输移扩散实验结果进行了比较,分析了各种因素对波浪作用下沿岸流分布规律影响,所得结论认为地形坡度及入射波高对污染物输移扩散的影响较大,波浪作用将使缓坡海滩上污染物的输移扩散平行岸线方向. 相似文献
13.
To make a curvilinear motion in the horizontal plane is one of the most contents for realizing the maneuverability of the supercavitating vehicle. It is significant to achieve the controllability and maneuverability of the vehicle in three dimensions both theoretically and practically on research. Models of angle of attack, gravity and inertial force effects on the supercavity in the horizontal curvilinear motion are established, respectively. The supercavity is simulated based on these models in combination with Logvinovich model and the unsteady gas-leakage rate model at the given ventilation rate, and the effect of the inertial force on it is analyzed numerically. Results show that the maximum deviation of the center line of the cross section of supercavity towards the outward normal direction of its trajectory increases as the cavitation number or curvature radius decrease and always occur in the tail because of the increase of inertial effects along the axis of supercavity from the cavitator when other models and flow parameters are constant for the given trajectory curvature. For the variable curvature, the supercavity sheds due to its instability caused by the time-varying angle of attack. The deviation increases along the length of supercavity if the curvature remains the same sign. 相似文献
14.
Numerical study of pollutant movement in waves and wave-induced long-shore currents in surf zone 总被引:1,自引:0,他引:1
Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pollutant movement equation, and the numerical results have also been validated by experimental data. It is shown that the long-shore current velocity and wave set-up increase with the increasing incident wave amplitude and slope steepness of the shore plane ; the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane. In surf zones, the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement. 相似文献
15.
波浪是近岸海域关键的水动力因素之一。考虑到近岸地形复杂、波浪演化显著的特点,建立了四叉树网格体系下的椭圆型缓坡方程数值模型,采用有限体积法对模型进行数值离散,应用GPBiCG(m, n)算法求解离散后的控制方程。模型中根据波浪波长布局计算网格,生成多层次四叉树网格,对复杂计算域有较好的适应性,并且在离散和方程求解中无需引入形函数、不产生复杂的交叉项,节约了存储空间和计算时间。将模型成功应用于物理模型实验及Acapulco海湾的波浪场数值模拟,结果表明该模型能够准确、高效地模拟近岸波浪场,可为近岸波浪场的模拟提供一定的理论和技术支持。 相似文献
16.
1.Introduction Riverflowsinacompoundchannelofteninundatetheadjacentplainsathighdischarges.This generatesacomplicatedflowstructurebetweenthemainchannelflowandthefloodplainflow.In straightchannels,thevelocitydifferencebetweentheflowinthemainchannelandthatontheflood plainisoneofthemostdistinctivecharacteristics.Thisintroducesseveralphysicalandphenomenologi calfeaturesaroundthejunctionbetweenthemainchannelandthefloodplain,namely,theformation ofahighhorizontalshearlayerandstreamwiseandverticalvorti… 相似文献
17.
18.
19.
长江口水域波浪数值计算 总被引:2,自引:0,他引:2
利用高阶非线性抛物型缓坡方程对长江口水域的波浪传播变形作了推算,依据测站的资料分析数值模式中的底摩阻因子和风能输入因子对波浪传播的影响,进而确定其参数。针对不同导堤结构型式,分析了潜堤的波浪传递系数,最后对长江口二期整治工程完成后水域的波浪场作了推算。 相似文献
20.
波浪在斜坡地形上破碎,破波后稳定波高多采用物理模型试验方法进行研究,利用近岸波浪传播变形的抛物型缓坡方程和波能流平衡方程,导出了适用于斜坡上波浪破碎的数值模拟方法。首先根据波能流平衡方程和缓坡方程基本型式分析波浪在破波带内的波能变化和衰减率,推导了波浪传播模型中波能衰减因子和破波能量流衰减因子之间的关系;其次,利用陡坡地形上的高阶抛物型缓坡方程建立了波浪传播和波浪破碎数学模型;最后,根据物理模型试验实测数据对数值模拟的效果进行验证。数值计算与试验资料比较表明,该模型可以较好地模拟斜坡地形的波浪传播波高变化。 相似文献