首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Bifurcations are key geomorphological nodes in anabranching and braided fluvial channels, controlling local bed morphology, the routing of sediment and water, and ultimately defining the stability of their associated diffluence–confluence unit. Recently, numerical modelling of bifurcations has focused on the relationship between flow conditions and the partitioning of sediment between the bifurcate channels. Herein, we report on field observations spanning September 2013 to July 2014 of the three‐dimensional flow structure, bed morphological change and partitioning of both flow discharge and suspended sediment through a large diffluence–confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13 500 to 27 000 m3 s?1). Analysis of discharge and sediment load throughout the diffluence–confluence unit reveals that during the highest flows (Q = 27 000 m3 s?1), the downstream island complex is a net sink of sediment (losing 2600 ± 2000 kg s?1 between the diffluence and confluence), whereas during the rising limb (Q = 19 500 m3 s?1) and falling limb flows (Q = 13 500 m3 s?1) the sediment balance is in quasi‐equilibrium. We show that the discharge asymmetry of the bifurcation varies with discharge and highlight that the influence of upstream curvature‐induced water surface slope and bed morphological change may be first‐order controls on bifurcation configuration. Comparison of our field data to existing bifurcation stability diagrams reveals that during lower (rising and falling limb) flow the bifurcation may be classified as unstable, yet transitions to a stable condition at high flows. However, over the long term (1959–2013) aerial imagery reveals the diffluence–confluence unit to be fairly stable. We propose, therefore, that the long‐term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence–confluence unit, may be controlled by the dominant sediment transport regime of the system. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

3.
After its formation, a rill may remain in the field for months, often receiving lower flow rates than the formative discharge. The objective of this work was to evaluate the rill flow transport capacity of soil aggregates at discharges unable to erode the rill, and to analyse the influence of the rill macro‐roughness on this transport process. A non‐erodible rill was built in which roughness was reproduced in detail. In order to assess only the rill macro‐roughness, a flat channel with a similar micro‐roughness to that in the rill replica was built. Rill and channel experiments were carried out at a slope of 8 and at six discharges (8·3 × 10?5 to 5·2 × 10?4 m3 s?1) in the rill, and eight discharges (1·6 × 10?5 to 5·2 × 10?4 m3 s?1) in the channel. Non‐erodible aggregates of three sizes (1–2, 3–5 and 5–10 mm) were released at the inlet of the rill/channel. The number of aggregates received at the outlet was registered. The number and position of the remaining aggregates along the rill/channel were also determined. The rill flow was a major sediment transport mechanism only during the formation of the rill, as during that period the power of the flow was great enough to overcome the influence of the macro‐roughness of the rill bed. At lower discharges the transport capacity in the previously formed rill was significantly less than that in the flat channel under similar slope and discharge. This was determined to be due to local slowing of flow velocities at the exit of rill pools. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Lowland permeable catchments in the UK are particularly prone to sedimentation problems, on account of the increased fine sediment loadings generated by recent land‐use change and their stable seasonal hydrological regimes, which are frequently depleted by groundwater abstraction. Fine‐grained sediment storage on the bed of the main channel systems of the Frome (437 km2) and Piddle (183 km2) catchments, Dorset, UK, has been examined at 29 sites using a sediment remobilization technique. Measurements encompassed the period February 2003–July 2004. At individual sites in the Frome, average values ranged between 410 and 2630 g m?2, with an overall mean of 918 g m?2. In the Piddle, the average values for individual sites varied between 260 and 4340 g m?2, with an overall mean of 1580 g m?2. Temporal variations in fine bed sediment storage at each site were appreciable, with the coefficients of variation ranging between 43 and 155% in the Frome and between 33 and 160% in the Piddle. Average reach‐scale specific bed sediment storage increased markedly downstream along each main stem from 2 to 29 t km?1 (Frome) and from 4 to 19 t km?1 (Piddle). Total fine sediment storage on the channel bed of the Frome varied between 479 t (5 t km?1) and 1694 t (17 t km?1), with a mean of 795 t (7 t km?1), compared with between 371 t (5 t km?1) and 1238 t (14 t km?1) with a mean of 730 t (9 t km?1) in the Piddle. During the study period, fine bed sediment storage was typically equivalent to 18% (Frome) and 57% (Piddle) of the mean annual suspended sediment flux at the study catchment outlets. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Coarse bed load was sampled in a gravel/cobble bed stream during two major floods in the snowmelt runoff season. The channel is characterized by high rates of bank erosion and, therefore, high rates of sediment supply and bed load flux. Peak discharge reached four times bank‐full, and bed load was sampled at flows 0·7–1·7 times bank‐full. A large aperture bed load sampler (1 m by 0·45 m) captured the largest particles in motion, and specifically targeted the coarse bed load size distribution by using a relatively large mesh (32 mm or D25 of streambed surface size distribution). Bed load flux was highly variable, with a peak value of 0·85 kg/s/m for the coarse fraction above 38 mm. Bed load size distribution and maximum particle size was related to flow strength. Entrainment was size selective for particles D70 and larger (88–155 mm), while particles in the range D30D70 (35–88 mm) ceased to move at essentially the same flow. Bed load flux was size selective in that coarse fractions of the streambed surface were under‐represented in or absent from the bed load. Painted tracer particles revealed that the streambed surface in the riffles could remain stable even during high rates of bed load transport. These observations suggest that a large proportion of bed load sediments was sourced from outside the riffles. Repeat surveys confirmed major scour and fill in pools (up to 0·75 m), and bank erosion (>2 m), which together contributed large volumes of sediment to the bed load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
We present herein clear field evidence for the persistence of a coarse surface layer in a gravel‐bed river during flows capable of transporting all grain sizes present on the channel bed. Detailed field measurements of channel topography and bed surface grain size were made in a gravel‐bed reach of the Colorado River prior to a flood in 2003. Runoff produced during the 2003 snowmelt was far above average, resulting in a sustained period of high flow with a peak discharge of 27 m3/s (170% of normal peak flow); all available grain sizes within the study reach were mobilized in this period of time. During the 2003 peak flow, the river avulsed immediately upstream of the study reach, thereby abandoning approximately one half kilometer of the former channel. The abandonment was rapid (probably within a few hours), leaving the bed texture essentially frozen in place at the peak of the flood. All locations sampled prior to the flood were resampled following the stream abandonment. In response to the high flow, the surface median grain size (D50s) coarsened slightly in the outer part of the bend while remaining nearly constant along the inner part of the bend, resulting in an overall increase from 18 to 21 mm for the study reach. Thus, the coarse bed surface texture persisted despite shear stresses throughout the bend that were well above the critical entrainment value. This may be explained because the response of the bed texture to increases in flow strength depends primarily upon the continued availability of the various grain size percentiles in the supply, which in this case was essentially unlimited for all sizes present in the channel. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Along the lower reaches of the Waipaoa River, New Zealand, cross‐section survey data indicate there was a 23 per cent decrease in bankfull width and a 22 per cent reduction in channel cross‐section area between 1948 and 2000, as the channel responded to increased inputs of fine (suspended) sediment following deforestation of the headwaters in late C19 and early C20. We determined the bankfull discharge within a ~39 km long reach by routing known discharges through the one‐dimensional MIKE 11 flow model. The model runs suggest that the bankfull discharge varies between ~800 and ~2300 m3 s?1 and that the average recurrence interval is 4 ± 2 years on the annual maximum series; by contrast, the effective flow (360 m3 s?1) is equaled or exceeded three times a year. The variability in bankfull discharge arises because the banks tend to be lower in places where flood flows are constricted than in reaches where overbank flow is dispersed over a wide area, and because scour has counteracted aggradation in some locations. There is no downstream variation in Shields stress, or in relative shear stress, within the study reach. Bankfull shear stress is, on average, five times greater than the shear stress required to initiate motion. At the effective discharge it is more than twice the threshold value. The effective discharge probably has more relevance than the bankfull discharge to the overall picture of sediment movement in the lower reaches of the Waipaoa River but, because width is constrained by the stability and resistance of the bank material to erosion during high flows that also scour the bed, the overall channel geometry is likely determined by discharges at or near bankfull. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A series of laboratory flume experiments under conditions of sediment starvation (zero sediment feeding) and recirculation were conducted in order to identify the temporal evolution and surface properties of static and mobile armour layers. The experiments were carried out in an 8 m long flume using a bimodal grain‐size mixture (D50 = 6·2 mm) and a range of shear stresses ranging from 4·0 to 8·6 N m–2. The results confirm that a static armour layer is coarser than a mobile one, and that the grain size of a mobile armour layer is rather insensitive to changes in the imposed flow strength. An analysis of laser scan bed surveys revealed the highly structured and imbricated nature of the static armour layer. Under these conditions the vertical roughness length scale of the bed diminished and it became topographically less complex at higher forming discharges. The topography of mobile armour layers created by rising discharges differed. They exhibited a greater roughness length scale and were less organized, despite the fact that the grain size of the surface material maintained an approximately constant value during recirculation. Also, the mobile armour tended to create larger cluster structures than static armour layers when formed by higher discharges. These differences were mainly due to the transport of the coarser fraction of bed sediments, which diminished to zero over the static armour because of being hidden within the bed, whereas in the mobile armour the coarser particles protruded into the flow and were actively transported, increasing the vertical roughness length scale. Overall, the results show that an examination of the grain size characteristics of armour layers cannot be used to infer sediment mobility and bed roughness. Detailed elevation models of exposed surfaces of gravel‐bed rivers are required to provide critical insight on the sediment availability and sedimentation processes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In several empirical and modelling studies on river hydraulics, dispersion was negatively correlated to surface roughness. In this study, it was aimed to investigate the influence of surface roughness on longitudinal dispersion under controlled conditions. In artificial flow channels with a length of 104 m, tracer experiments with variations in channel bed material were performed. By use of measured tracer breakthrough curves, average flow velocity, mean longitudinal dispersion, and mean longitudinal dispersivity were calculated. Longitudinal dispersion coefficients ranged from 0·018 m2 s?1 in channels with smooth bed surface up to 0·209 m2 s?1 in channels with coarse gravel as bed material. Longitudinal dispersion was linearly related to mean flow velocity. Accordingly, longitudinal dispersivities ranged between 0·152 ± 0·017 m in channels with smooth bed surface and 0·584 ± 0·015 m in identical channels with a coarse gravel substrate. Grain size and surface roughness of the channel bed were found to correlate positively to longitudinal dispersion. This finding contradicts several existing relations between surface roughness and dispersion. Future studies should include further variation in surface roughness to derive a better‐founded empirical equation forecasting longitudinal dispersion from surface roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Channel curvature produces secondary currents and a transverse sloping channel bed, along which the depth increases towards the outer bank. As a result deep pools tend to form adjacent to the outer bank, promoting bank collapse. The interaction of sediment grains with the primary and secondary flow and the transverse sloping bed also causes meanders to move different grain sizes in different proportions and directions, resulting in a consistent sorting pattern. Several models have been developed to describe this process, but they all have the potential to over‐predict pool depth because they cannot account for the influence of erodible banks. In reality, bank collapse might lead to the development of a wider, shallower cross‐section and any resulting flow depth discrepancy can bias associated predictions of flow, sediment transport, and grain‐size sorting. While bed topography, sediment transport and grain sorting in bends will partly be controlled by the sedimentary characteristics of the bank materials, the magnitude of this effect has not previously been explored. This paper reports the development of a model of flow, sediment transport, grain‐size sorting, and bed topography for river bends with erodible banks. The model is tested via intercomparison of predicted and observed bed topography in one low‐energy (5·3 W m?2 specific stream power) and one high‐energy (43·4 W m?2) study reach, namely the River South Esk in Scotland and Goodwin Creek in Mississippi, respectively. Model predictions of bed topography are found to be satisfactory, at least close to the apices of bends. Finally, the model is used in sensitivity analyses that provide insight into the influence of bank erodibility on equilibrium meander morphology and associated patterns of grain‐size sorting. The sensitivity of meander response to bank cohesion is found to increase as a function of the available stream power within the two study bends. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The Minas Basin, the eastern end of the Bay of Fundy, is well known for its high tide ranges and strong tidal currents, which can be exploited to extract electricity power. The properties of the tidally-induced sediment transport in the Minas Basin, where significant changes in tidal processes may occur due to a recently proposed tidal power project, have been studied with a three-dimensional hydrodynamic model, an empirical bed load sediment transport model and surface sediment concentrations derived from the remotely-sensed images. The hydrodynamic model was evaluated against independent observational data, which include tidal elevation, tidal current (in the full water column and bottom layer), residual current profile and tidal asymmetry indicators. The evaluation shows that the model is in good agreement with the observations.The sediment transport includes two components, bed load and suspended particulate load. The bed load is calculated using the modelled bottom shear stress and the observed grain size data. The estimated features of bed load transport roughly agree with the observed patterns of the erosion and deposition in the Minas Basin and Cobequid Bay. The transport of the suspended load is estimated using the modelled velocity fields and the surface sediment concentration derived from remote-sensing images. The comparisons between the modelled results and the limited observations illustrate that the observed directions of suspended sediment transport are basically reproduced by the model. The modelled net suspended sediment input into the Minas Basin through Minas Passage is 2.4×106 m3 yr?1, which is comparable to the observed value of 1.6×106 m3 yr?1.The variations of the bed load and the suspended load in space and time are also presented. The total net transport, defined as the mean value of the sum of bed and suspended load transports during the tidal cycle, shows strong spatial variability. The magnitude of the transport flux ranges from 0.1 to 0.2 kg m?1 s?1 in Minas Channel and Minas Passage, 0.1 kg m?1 s?1 in Cobequid Bay, to 0.01 kg m?1 s?1 in the central Minas Basin and Southern Bight. In Minas Channel, the sediment transport follows the structure of the tidal residual circulation, which features a large anticlockwise gyre. The sediment in Minas Passage moves eastward and deposits into the central Minas Basin. However, the sediment from the eastern part of the Basin moves westward and deposits in the central Minas Basin as well. In the Cobequid Bay, sediment moves eastward and deposits in the upper bay.  相似文献   

13.
The Manning equation is one of the most widely used formulae for calculating the velocity of shallow overland flow in hydrological and erosion models. Precise estimation of the Manning's friction coefficient (n) is critical to determining overland flow and soil erosion processes. Few studies have been conducted to quantify the effects of sediment load on Manning's n on steep slopes. This study was conducted to investigate the potential effects of sediment load on Manning's n in a flume with a fixed bed, under wide ranges of hydraulics and sediment loads. Slope gradient varied from 8·7 to 34·2%, unit flow rate from 0·66 to 5·26 × 10?3 m2 s?1, and sediment load from 0 to 6·95 kg m?1 s?1. The Reynolds number ranged from 350 to 5899. Results showed that Manning's n varied in both sediment‐free and sediment‐laden flows ranging from 0·012 to 0·055. The apparent Manning's coefficients of sediment‐laden flow were much greater than those of sediment‐free flow. The mean Manning coefficient of sediment‐laden flow was 51·27% greater than the mean value of sediment‐free flow. For sediment‐laden flow, Manning's n could be estimated with a power function of unit flow discharge and sediment content. Further studies are needed to quantify the potential effects of sediment load on the Manning's n on erodible beds and in fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The operational time distribution (OTD) defines the time for bed‐load sediment spent in motion, which is needed to characterize the random nature of sediment transport. This study explores the influence of bed clusters and size gradation on OTD for non‐uniform bed‐loads. First, both static and mobile bed armouring experiments were conducted in laboratorial flumes to monitor the transport of mixed sand/gravel sediments. Only in the mobile armouring experiment did apparent bed clusters develop, because of stable feeding and a longer transport period. Second, a generalized subordinated advection (GSA) model was applied to quantify the observed dynamics of tracer particles. Results show that for the static armour layer (without sediment feed), the best‐fit OTD assigns more weight to the large displacement of small particles, likely because of the size‐selective entrainment process. The capacity coefficient in the GSA model, which affects the width of the OTD, is space dependent only for small particles whose dynamics can be significantly affected by larger particles and whose distribution is more likely to be space dependent in a mixed sand and gravel system. However, the OTD for the mobile armour layer (with sediment recirculation) exhibited longer tails for larger particles. This is because the trailing edge of larger particles is more resistant to erosion, and their leading front may not be easily trapped by self‐organized bed clusters. The strong interaction between particle–bed may cause the capacity coefficient to be space‐dependent for bed‐load transport along mobile armour layers. Therefore, the combined laboratory experiments and stochastic model analysis show that the OTD may be affected more by particle–bed interactions (such as clusters) than by particle–particle interactions (e.g. hiding and exposing), and that the GSA model can quantify mixed‐size sand/gravel transport along river beds within either static or mobile armour layers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper studies relations between bankfull discharge,lateral cross section variation and the incoming flow and sediment condition in the Lower Yellow River using measured data from 1950 to 2003.Since 1950 the bankfull discharge has obviously decreased and the ratio of channel width to flow depth has increased.The critical annual average incoming sediment coefficient(defined as the ratio of sediment concentration to discharge) and discharge at the Huayuankou station are approximately 0.012 and 1,850 m3s-1,respectively,for no accumulative deposition occurring in the reach from Huayuankou to Lijin.On this basis,a mathematical model is used to study the scale of the main channel in the Lower Yellow River and its corresponding bankfull discharge under possible incoming flow and sediment conditions in the near future.The main factors influencing the scale of the main channel are analyzed,and measures to shape and maintain a medium-sized channel are discussed.The results show the effect of various water and sediment combinations released from the Xiaolangdi Reservoir on the shaping of the main channel and suggest that under recent incoming flow and sediment conditions,it is possible to shape and maintain a medium-sized channel with a bankfull discharge of approximate 4,000 m3 s-1.  相似文献   

16.
This paper reports on a first attempt of using the virtual velocity approach to assess sediment mobility and transport in two wide and complex gravel‐bed rivers of northern Italy. Displacement length and virtual velocity of spray‐painted tracers were measured in the field. Also, the thickness of the sediment active layer during floods was measured using scour chains and post‐flood morphological changes as documented by repeated survey of channel cross‐sections. The effects of eight and seven floods were studied on the Tagliamento and Brenta Rivers, where 259 and 277 spray‐painted areas were surveyed, respectively. In the Tagliamento River 36% of the spray‐painted areas experienced partial transport, whereas in the Brenta River this accounted for 20%. Whereas, full removal/gravel deposition was observed on 37% and 26% of these areas on the Tagliamento and Brenta Rivers, respectively. The mean displacement length of particles, the thickness of the active layer and the extent of partial transport are well correlated with the dimensionless shear stress. The virtual velocity approach allowed calculation of bed material transport over a wide range of flood magnitudes. Annual coarse sediment transport was calculated up to 150 for the Tagliamento, and 30 × 103  m3 yr?1 for the Brenta. The outcomes of this work highlight the relevance of partial transport condition, as it could represent more than 70% of the total bed material transported during low‐magnitude floods, and up to 40% for near‐bankfull events. Results confirm that bed material load tends to be overestimated by traditional formulas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The 1999 jökulhlaup at Sólheimajökull was the first major flood to be routed through the proglacial system in over 600 years. This study reconstructed the flood using hydrodynamic, sediment transport and morphodynamic numerical modelling informed by field surveys, aerial photograph and digital elevation model analysis. Total modelled sediment transport was 469 800 m3 (+/‐ 20%). Maximum erosion of 8.2 m occurred along the ice margin. Modelled net landscape change was –86 400 m3 (+/‐ 40%) resulting from –275 400 m3 (+/‐ 20%) proglacial erosion and 194 400 m3 (+/‐ 20%) proglacial deposition. Peak erosion rate and peak deposition rate were 650 m3 s‐1 (+/‐ 20%) and 595 m3 s‐1 (+/‐ 20%), respectively, and coincided with peak discharge of water at 1.5 h after flood initiation. The pattern of bed elevation change during the rising limb suggested widespread activation of the bed, whereas more organisation, perhaps primitive bedform development, occurred during the falling limb. Contrary to simplistic conceptual models, deposition occurred on the rising stage and erosion occurred on the falling limb. Comparison of the morphodynamic results with a hydrodynamic simulation illustrated effects of sediment transport and bed elevation change on flow conveyance. The morphodynamic model advanced flood arrival and peak discharge timings by 100% and 19%, respectively. However, peak flow depth and peak flow velocity were not significantly affected. We suggest that morphodynamic processes not only increase flow mass and momentum but that they also introduce a feedback process whereby flood conveyance becomes more efficient via erosion of minor bed protrusions and deposition that infills or subdues minor bed hollows. A major implication of this study is that reconstructions of outburst floods that ignore sediment transport, such as those used in interpretation of long‐term hydrological record and flood risk assessments, may need considerable refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In‐channel sand mining by dredge removes large quantities of bed sediment and alters channel morphodynamic processes. While the reach‐scale impacts of dredging are well documented, the effects of the dredged borrow pit on the local flow and sediment transport are poorly understood. These local effects are important because they control the post‐dredge evolution of the borrow pit, setting the pit lifespan and affecting reach‐scale channel morphology. This study documents the observed morphological evolution of a large (1·46 million m3) borrow pit mined on a lateral sandbar in the lower Mississippi River using a time‐series of multibeam bathymetric surveys. During the 2·5 year time‐series, 53% of the initial pit volume infilled with sediment, decreasing pit depth by an average of 0·88 m yr?1. To explore the controls of the observed infilling, a morphodynamic model (Delft3D) was used to simulate flow and sediment transport within the affected river reach. The model indicated that infilling rates were primarily related to the riverine sediment supply and pit geometry. The pit depth and length influenced the predicted magnitude of the pit bed shear stress relative to its pre‐dredged value, i.e. the bed‐stress reduction ratio (R*), a metric that was correlated with the magnitude and spatial distribution of infilling. A one‐dimensional reduced‐complexity model was derived using predicted sediment supply and R* to simulate patterns of pit infilling. This simplified model of borrow‐pit evolution was able to closely approximate the amount and patterns of sediment deposition during the study period. Additional model experiments indicate that, for a borrow pit of a set volume, creating deep, longitudinally‐shorter borrow pits significantly increased infilling rates relative to elongated pits. Study results provide insight into the resilience of alluvial river channels after a disturbance and the sustainability of sand mining as a sediment source for coastal restoration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes delta development processes with particular reference to Cimanuk Delta in Indonesia. Cimanuk river delta, the most rapidly growing river delta in Indonesia, is located on the northern coast of Java Island. The delta is subject to ocean waves of less than 1 m height due to its position in the semi‐enclosed Java Sea in the Indonesian archipelago. The study has been carried out using a hydrodynamic model that accounts for sediment movement through the rivers and estuaries. As an advanced approach to management of river deltas, a numerical model, namely MIKE‐21, is used as a tool in the management of Cimanuk river delta. From calibration and verification of hydrodynamic model, it was found that the best value of bed roughness was 0·1 m. For the sediment‐transport model, the calibration parameters were adjusted to obtain the most satisfactory results of suspended sediment concentration and volume of deposition. By comparing the computed and observed data in the calibration, the best values of critical bed shear stress for deposition, critical bed shear stress for erosion and erosion coefficient were 0·05 N m?2, 0·15 N m?2, and 0·00001 kg m?2 s?1, respectively. The calibrated model was then used to analyse sensitivity of model parameters and to simulate delta development during the periods 1945–1963 and 1981–1997. It was found that the sensitive model parameters were bed shear stresses for deposition and erosion, while the important model inputs were river suspended sediment concentration, sediment characteristics and hydrodynamic. The model result showed reasonable agreement with the observed data. As evidenced by field data, the mathematical model proves that the Cimanuk river delta is a river‐dominated delta because of its protrusion pattern and very high sediment loads from the Cimanuk river. It was concluded that 86% of sediment load from the Cimanuk river was deposited in the Cimanuk delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Rills are primary sediment sources and hillslope water/sediment runoff transport channels. Water flow velocities in rills are easily affected by bed condition over eroding and non-eroding slopes, which is an important hydrodynamic process in soil erosion research. This research is done to demonstrate the poorly understood “feedback mechanism” related to slope independence of flow velocity to slope gradient. A series of experiments were done on silt loam soil slopes to measure water flow velocity...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号