首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present CCD (charge-coupled device) photometry for galaxies around 204 bright ( m Z<15.5) Zwicky galaxies in the equatorial extension of the APM Galaxy Survey, sampling an area over 400 deg2, which extends 6 h in right ascension. We fit a best linear relation between the Zwicky magnitude system, m Z, and the CCD photometry, B CCD, by doing a likelihood analysis that corrects for Malmquist bias. This fit yields a mean scale error in Zwicky of 0.38 mag mag−1: i.e. Δ m Z≃(0.62±0.05)Δ B CCD and a mean zero-point of 〈 B CCD− m Z〉=−0.35±0.15 mag. The scatter around this fit is about 0.4 mag. Correcting the Zwicky magnitude system with the best-fitting model results in a 60 per cent lower normalization and 0.35-mag brighter M * in the luminosity function. This brings the CfA2 luminosity function closer to the other low-redshift estimations (e.g. Stromlo-APM or LCRS). We find a significant positive angular correlation of magnitudes and position in the sky at scales smaller than about 5 arcmin, which corresponds to a mean separation of 120  h −1 kpc. We also present colours, sizes and ellipticities for galaxies in our fields, which provides a good local reference for the studies of galaxy evolution.  相似文献   

2.
We present the results of a deep K -band imaging study which reveals the host galaxies around a sample of luminous radio-quiet quasars. The K -band images, obtained at UKIRT, are of sufficient quality to allow accurate modelling of the underlying host galaxy. Initially, the basic structure of the hosts is revealed using a modified clean deconvolution routine optimized for this analysis. Two of the 14 quasars are shown to have host galaxies with violently disturbed morphologies which cannot be modelled by smooth elliptical profiles. For the remainder of our sample, 2D models of the host and nuclear component are fitted to the images using the χ 2 statistic to determine goodness of fit. Host galaxies are detected around all of the quasars. The reliability of the modelling is extensively tested, and we find the host luminosity to be well constrained for nine quasars. The derived average K -band absolute K -corrected host galaxy magnitude for these luminous radio-quiet quasars is 〈 M K 〉=25.15±0.04, slightly more luminous than an L * galaxy. The spread of derived host galaxy luminosities is small, although the spread of nuclear-to-host ratios is not. These host luminosities are shown to be comparable to those derived from samples of quasars of lower total luminosity, and we conclude that there is no correlation between host and nuclear luminosity for these quasars. Nuclear-to-host ratios break the lower limit previously suggested from studies of lower nuclear luminosity quasars and Seyfert galaxies. Morphologies are less certain but, on the scales probed by these images, some hosts appear to be dominated by spheroids while others appear to have disc-dominated profiles.  相似文献   

3.
We have obtained U - and R -band observations of the depletion of background galaxies resulting from the gravitational lensing of the galaxy cluster CL0024+1654 ( z =0.39). The radial depletion curves show a significant depletion in both bands within a radius of 40–70 arcsec from the cluster centre. This is the first time that depletion is detected in the U band. This gives independent evidence for a break in the slope of the U -band luminosity function at faint magnitudes. The radially averaged R -band depletion curve is broader and deeper than in the U band. The differences can be attributed to the wavelength dependence of the slope of the luminosity function and to the different redshift distribution of the objects probed in the two bands. We estimate the Einstein radius, r E, of a singular isothermal sphere lens model using maximum-likelihood analysis. Adopting a slope of the number counts of α =0.2 and using the background density found beyond r =150 arcsec, we find r E=17±3 and 25±3 arcsec in the U and R bands, respectively. When combined with the redshift of the single background galaxy at z =1.675 seen as four giant arcs around 30 arcsec from the cluster centre, these values indicate a median redshift in the range 〈 z S〉≈0.7 to 1.1 for the U AB≥24 mag and R AB≥24 mag populations.  相似文献   

4.
We determine the companion galaxy luminosity function (LF) for regions around isolated spiral galaxies. If we assume that any excess in the galaxy number counts in the vicinity of a spiral galaxy is due to galaxies at the same distance, then a system LF can be determined from the variation of excess numbers with apparent magnitude. By studying the excess over many field 'centre' galaxies, a good statistical accuracy can be obtained for the companion galaxy LF. Since redshift information is not required for the faint galaxies, it is possible to sample further down the LF as compared with redshift surveys. For 23 primary galaxies of known redshift, we find a dwarf satellite Schechter LF with a characteristic magnitude M V *( D )≃−19 and a faint-end slope α=−1.7, down to MV =−14 ( H 0=50 km s−1 Mpc−1).  相似文献   

5.
We use the Hubble Ultra Deep Field to study the galaxy luminosity–size  ( M – R e )  distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the   M – R e   plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since   z ∼ 0.7  . Specifically, we demonstrate that the mean, rest-frame B -band  〈μ〉 e   for galaxies in a sample spanning 8 mag in luminosity between   M B =−22  and −14 mag increases by ∼1.0 mag arcsec−2 from   z ∼ 0.1  to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.  相似文献   

6.
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41 ± 0.03 for   M r ≈−18  ellipticals and 0.76 ± 0.04 for   M r ≈−22.5  ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth.
There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS DR6 are consistent with flat discs with a mean and dispersion of thickness to diameter ratio of (21 ± 2) per cent, and a face-on ellipticity, e , of  ln( e ) =−2.33 ± 0.79  . Not including the effects of dust in the model leads to discs that are systematically rounder by up to 60 per cent. More luminous spiral galaxies tend to have thicker and rounder discs than lower luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies.
The marginalized value of the edge-on r -band dust extinction E 0 in spiral galaxies is   E 0≃ 0.45  mag for galaxies of median colours, increasing to   E 0= 1  mag for   g − r > 0.9  and   E 0= 1.9  for the luminous and most compact galaxies, with half-light radii  <2  h −1 kpc  .  相似文献   

7.
Stellar populations in spiral bulges are investigated using the Lick system of spectral indices. Long-slit spectroscopic observations of line strengths and kinematics made along the minor axes of four spiral bulges are reported. Comparisons are made between central line strengths in spiral bulges and those in other morphological types [elliptical, spheroidal (Sph) and S0]. The bulges investigated are found to have central line strengths comparable to those of single stellar populations of approximately solar abundance or above. Negative radial gradients are observed in line strengths, similar to those exhibited by elliptical galaxies. The bulge data are also consistent with correlations between Mg2, Mg2 gradient and central velocity dispersion observed in elliptical galaxies. In contrast to elliptical galaxies, central line strengths lie within the loci defining the range of 〈Fe〉 and Mg2 achieved by Worthey's solar abundance ratio, single stellar populations (SSPs). The implication of solar abundance ratios indicates significant differences in the star formation histories of spiral bulges and elliptical galaxies. A 'single zone with infall' model of galactic chemical evolution, using Worthey's SSPs, is used to constrain the possible star formation histories of our sample. We show that the 〈Fe〉, Mg2 and H β line strengths observed in these bulges cannot be reproduced using primordial collapse models of formation but can be reproduced by models with extended infall of gas and star formation (2–17 Gyr) in the region modelled. One galaxy (NGC 5689) shows a central population with a luminosity-weighted average age of ∼5 Gyr, supporting the idea of extended star formation. Kinematic substructure, possibly associated with a central spike in metallicity, is observed at the centre of the Sa galaxy NGC 3623.  相似文献   

8.
We present K -band observations of the low-luminosity galaxies in the Coma cluster, which are responsible for the steep upturn in the optical luminosity function at M R∼−16, discovered recently. The main results of this study are as follows.
(i) The optical–near-infrared colours of these galaxies imply that they are dwarf spheroidal galaxies. The median B − K colour for galaxies with −19.3< MK <−16.3 is 3.6 mag.
(ii) The K -band luminosity function in the Coma cluster is not well constrained, because of the uncertainties due to the field-to-field variance of the background. However, within the estimated large errors, this is consistent with the R -band luminosity function, shifted by ∼3 mag.
(iii) Many of the cluster dwarfs lie in a region of the B − K versus B − R colour–colour diagram where background galaxies are rare ( B − K <5; 1.2< B − R <1.6). Local dwarf spheroidal galaxies lie in this region too. This suggests that a better measurement of the K -band cluster luminosity can be made if the field-to-field variance of the background can be measured as a function of colour, even if it is large.
(iv) If we assume that none of the galaxies in the region of the B − K versus B − R plane given in (iii) in our cluster fields are background, and that all the cluster galaxies with 15.5< K <18.5 lie in this region of the plane, then we measure α=−1.41+0.34−0.37 for −19.3< MK −16.3, where α is the logarithmic slope of the luminosity function. The uncertainties in this number come from counting statistics.  相似文献   

9.
We describe ISAAC/ESO-VLT observations of the Hαλ6563 Balmer line of 33 field galaxies from the Canada–France Redshift Survey (CFRS) with redshifts selected between 0.5 and 1.1. We detect Hα in emission in 30 galaxies and compare the properties of this sample with the low-redshift sample of CFRS galaxies at   z ∼ 0.2  . We find that the Hα luminosity,   L (Hα)  , is tightly correlated to   M ( B AB)  in the same way for both the low- and high-redshift samples.   L (Hα)  is also correlated to L ([O  ii ]λ3727), and again the relation appears to be similar at low and high redshifts. The ratio L (lsqb;O  ii ])/   L (Hα)  decreases for brighter galaxies by as much as a factor of 2 on average. Derived from the Hα luminosity function, the comoving Hα luminosity density increases by a factor 12 from  〈 z 〉= 0.2  to  〈 z 〉= 1.3  . Our results confirm a strong rise of the star formation rate (SFR) at   z < 1.3  , proportional to  (1 + z )4.1±0.3  (with   H 0= 50 km s−1 Mpc−1, q 0= 0.5  ). We find an average  SFR(2800 Å)/SFR (Hα)  ratio of 3.2 using the Kennicutt SFR transformations. This corresponds to the dust correction that is required to make the near-ultraviolet data consistent with the reddening-corrected Hα data within the self-contained, I -selected CFRS sample.  相似文献   

10.
We report the result of a search for Lyα emission from the host galaxies of the gamma-ray bursts  (GRBs) 030226 ( z = 1.986), 021004 ( z = 2.335)  and  020124 ( z = 3.198)  . We find that the host galaxy of GRB 021004 is an extended (around 8 kpc) strong Lyα emitter with a rest-frame equivalent width (EW) of 68+12−11Å, and a star formation rate of  10.6 ± 2.0 M yr−1  . We do not detect the hosts of GRB 030226 and GRB 020124, but the upper limits on their Lyα fluxes do not rule out large rest-frame EWs. In the fields of GRB 021004 and GRB 030226 we find seven and five other galaxies, respectively, with excess emission in the narrow-band filter. These galaxies are candidate Lyα-emitting galaxies in the environment of the host galaxies. We have also compiled a list of all   z ≳ 2  GRB hosts, and demonstrate that a scenario where they trace star formation in an unbiased way is compatible with current observational constraints. Fitting the   z = 3  luminosity function (LF) under this assumption results in a characteristic luminosity of   R *= 24.6  and a faint-end slope of  α=−1.55  , consistent with the LF measured for Lyman-break galaxies.  相似文献   

11.
We present optical and infrared broad-band images, radio maps, and optical spectroscopy for the nuclear region of a sample of nearby galaxies. The galaxies have been drawn from a complete volume-limited sample for which we have already presented X-ray imaging. We modelled the stellar component of the spectroscopic observations to determine the star formation history of our targets. Diagnostic diagrams were used to classify the emission-line spectra and determine the ionizing mechanism driving the nuclear regions. All those sources classified as active galactic nuclei present small Eddington ratios  (∼10−3–10−6)  , implying a very slow growth rate of their black holes. We finally investigate the relative numbers of active and normal nuclei as a function of host galaxy luminosity and find that the fraction of active galaxies slowly rises as a function of host absolute magnitude in the   M B ∼−12  to −22 range.  相似文献   

12.
The effects of late gas accretion episodes and subsequent merger-induced starbursts on the photochemical evolution of elliptical galaxies are studied and compared to the picture of galaxy formation occurring at high redshift with a unique and intense starburst modulated by a very short infall, as suggested by Pipino and Matteucci in Paper I. By means of the comparison with the colour–magnitude relations (CMRs) and the  [〈Mg/Fe〉 V ]–σ  relation observed in ellipticals, we conclude that either bursts involving a gas mass comparable to the mass already transformed into stars during the first episode of star formation (SF) and occurring at any redshift, or bursts occurring at low redshift (i.e. z ≤ 0.2) and with a large range of accreted mass, are ruled out. These models fail in matching the above relations even if the initial infalling hypothesis is relaxed, and the galaxies form either by means of more complicated SF histories or by means of the classical monolithic model. On the other hand, galaxies accreting a small amount of gas at high redshift (i.e. z ≥ 3) produce a spread in the model results, with respect to the best model of Paper I, which is consistent with the observational scatter of the CMRs, although there is only marginal agreement with the  [〈Mg/Fe〉 V ]–σ  relation. Therefore, only small perturbations to the standard scenario seem to be allowed. We stress that the strongest constraints to galaxy-formation mechanisms are represented by the chemical abundances, whereas the colours can be reproduced under several different hypotheses.  相似文献   

13.
We investigate the old globular cluster (GC) population of 68 faint  ( M V > −16 mag)  dwarf galaxies located in the halo regions of nearby (≲12 Mpc) loose galaxy groups and in the field environment based on archival Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) images in F606W and F814W filters. The combined colour distribution of 175 GC candidates peaks at  ( V − I ) = 0.96 ± 0.07 mag  and the GC luminosity function turnover for the entire sample is found at   M V ,TO=−7.6 ± 0.11 mag  , similar to the old metal-poor Large Magellanic Cloud (LMC) GC population. Our data reveal a tentative trend of   M V ,TO  becoming fainter from late- to early-type galaxies. The luminosity and colour distributions of GCs in dIrrs show a lack of faint blue GCs (bGCs). Our analysis reveals that this might reflect a relatively younger GC system than typically found in luminous early-type galaxies. If verified by spectroscopy, this would suggest a later formation epoch of the first metal-poor star clusters in dwarf galaxies. We find several bright (massive) GCs which reside in the nuclear regions of their host galaxies. These nuclear clusters have similar luminosities and structural parameters as the peculiar Galactic clusters suspected of being the remnant nuclei of accreted dwarf galaxies, such as M54 and ωCen. Except for these nuclear clusters, the distribution of GCs in dIrrs in the half-light radius versus cluster mass plane is very similar to that of Galactic young halo clusters, which suggests comparable formation and dynamical evolution histories. A comparison with theoretical models of cluster disruption indicates that GCs in low-mass galaxies evolve dynamically as self-gravitating systems in a benign tidal environment.  相似文献   

14.
The Fornax cluster galaxies NGC 1399 and NGC 1404 are ideal for studying the effects of a cluster environment on globular cluster systems. Here we present new optical imaging of these two galaxies from both the Hubble Space Telescope 's Wide Field and Planetary Camera 2 and the Cerro Tololo Inter-American Observatory 1.5-m telescope. The combination of both data sets provides a unique insight on the spatial and colour distribution of globular clusters. From B − I colours, we find that both galaxies have a broad globular cluster metallicity distribution that is inconsistent with a single population. Two Gaussians provide a reasonable representation of the metallicity distribution in each galaxy. The metal-rich subpopulation is more centrally concentrated than the metal-poor one. We show that the radial metallicity gradient can be explained by the changing relative mix of the two globular cluster subpopulations. We derive globular cluster surface density profiles, and find that they are flatter (i.e., more extended) than the underlying starlight. The total number of globular clusters and specific frequency are calculated to be N =5700±500, SN =11.5±1.0 for NGC 1399, and N =725±145, SN =2.0±0.5 for NGC 1404. Our results are compared with the expectations of globular cluster formation scenarios.  相似文献   

15.
We present a comparison between the SCUBA (Submillimetre Common User Bolometer Array) Half Degree Extragalactic Survey (SHADES) at 450 and  850 μm  in the Lockman Hole East with a deep Spitzer Space Telescope survey at  3.6–24 μm  conducted in guaranteed time. Using stacking analyses we demonstrate a striking correspondence between the galaxies contributing the submm extragalactic background light, with those likely to dominate the backgrounds at Spitzer wavelengths. Using a combination BRIzK plus Spitzer photometric redshifts, we show that at least a third of the Spitzer -identified submm galaxies at  1 < z < 1.5  appear to reside in overdensities when the density field is smoothed at 0.5–2 Mpc comoving diameters, supporting the high-redshift reversal of the local star formation–galaxy density relation. We derive the dust-shrouded cosmic star formation history of galaxies as a function of assembled stellar masses. For model stellar masses  <1011 M  , this peaks at lower redshifts than the ostensible   z ∼ 2.2  maximum for submm point sources, adding to the growing consensus for 'downsizing' in star formation. Our surveys are also consistent with 'downsizing' in mass assembly. Both the mean star formation rates  〈d M */d t 〉  and specific star formation rates  〈(1/ M *) d M */d t 〉  are in striking disagreement with some semi-analytic predictions from the Millenium Simulation. The discrepancy could either be resolved with a top-heavy initial mass function, or a significant component of the submm flux heated by the interstellar radiation field.  相似文献   

16.
We present velocity dispersion measurements for 69 faint early-type galaxies in the core of the Coma cluster, spanning  −22.0 ≲ MR ≲−17.5 mag  . We examine the   L –σ  relation for our sample and compare it to that of bright elliptical galaxies (Es) from the literature. The distribution of the the faint early-type galaxies in the   L –σ  plane follows the relation   L ∝σ2.01±0.36  , which is significantly shallower from   L ∝σ4  as defined for the bright Es. While increased rotational support for fainter early-type galaxies could account for some of the difference in slope, we show that it cannot explain it. We also investigate the colour–σ relation for our Coma galaxies. Using the scatter in this relation, we constrain the range of galaxy ages as a function of their formation epoch for different formation scenarios. Assuming a strong coordination in the formation epoch of faint early-type systems in Coma, we find that most had to be formed at least 6 Gyr ago and over a short 1-Gyr period.  相似文献   

17.
Redshift surveys such as the Sloan Digital Sky Survey (SDSS) have given a very precise measurement of the galaxy luminosity function down to about   MR =−17 (≈ MB =−16)  . Fainter absolute magnitudes cannot be probed because of the flux limit required for spectroscopy. Wide-field surveys of nearby groups using mosaic CCDs on large telescopes are able to reach much fainter absolute magnitudes, about   MR =−10  . These diffuse, spiral-rich groups are thought to be typical environments for galaxies, so their luminosity functions should be the same as the field luminosity function. The luminosity function of the groups at the bright end  ( MR < −17)  is limited by Poisson statistics and is far less precise than that derived from redshift surveys. Here we combine the results of the SDSS and the surveys of nearby groups, and we supplement the results with studies of Local Group galaxies in order to determine the galaxy luminosity function over the entire range  −25 < MR < −9  . The average logarithmic slope of the field luminosity function between   MR =−19  and   MR =−9  is  α=−1.26  , although a single power law is a poor fit to the data over the entire magnitude range. We also determine the luminosity function of galaxy clusters and demonstrate that it is different from the field luminosity function at a high level of significance; there are many more dwarf galaxies in clusters than in the field, due to a rise in the cluster luminosity function of  α∼−1.6  between   MR =−17  and   MR =−14  .  相似文献   

18.
We consider the luminosity and environmental dependence of structural parameters of lenticular galaxies in the near-infrared K band. Using a 2D galaxy image decomposition technique, we extract bulge and disc structural parameters for a sample of 36 lenticular galaxies observed by us in the K band. By combining data from the literature for field and cluster lenticulars with our data, we study correlations between parameters that characterize the bulge and the disc as a function of luminosity and environment. We find that scaling relations such as the Kormendy relation, photometric plane and other correlations involving bulge and disc parameters show a luminosity dependence. This dependence can be explained in terms of galaxy formation models in which faint lenticulars  ( M T > −24.5)  formed via secular formation processes that likely formed the pseudo-bulges of late-type disc galaxies, while brighter lenticulars  ( M T < −24.5)  formed through a different formation mechanism most likely involving major mergers. On probing variations in lenticular properties as a function of environment, we find that faint cluster lenticulars show systematic differences with respect to faint field lenticulars. These differences support the idea that the bulge and disc components fade after the galaxy falls into a cluster, while simultaneously undergoing a transformation from spiral to lenticular morphologies.  相似文献   

19.
In large spheroidal stellar systems, such as elliptical galaxies, one invariably finds a  106–109 M  supermassive black hole at their centre. In contrast, within dwarf elliptical galaxies one predominantly observes a  105–107 M  nuclear star cluster. To date, few galaxies have been found with both types of nuclei coexisting and even less have had the masses determined for both central components. Here, we identify one dozen galaxies housing nuclear star clusters and supermassive black holes whose masses have been measured. This doubles the known number of such hermaphrodite nuclei – which are expected to be fruitful sources of gravitational radiation. Over the host spheroid (stellar) mass range  108–1011 M  , we find that a galaxy's nucleus-to-spheroid (baryon) mass ratio is not a constant value but decreases from a few per cent to ∼0.3 per cent such that  log[( M BH+ M NC)/ M sph]=−(0.39 ± 0.07) log[ M sph/1010 M]− (2.18 ± 0.07)  . Once dry merging commences and the nuclear star clusters disappear, this ratio is expected to become a constant value.
As a byproduct of our investigation, we have found that the projected flux from resolved nuclear star clusters is well approximated with Sérsic functions having a range of indices from ∼0.5 to ∼3, the latter index describing the Milky Way's nuclear star cluster.  相似文献   

20.
We measure the autocorrelation function, ξ , of galaxies in the IRAS Point Source Catalogue galaxy redshift (PSC z ) survey and investigate its dependence on the far-infrared colour and absolute luminosity of the galaxies. We find that the PSC z survey correlation function can be modelled out to a scale of 10  h −1 Mpc as a power law of slope 1.30±0.04 and correlation length 4.77±0.20 . At a scale of 75  h −1 Mpc we find the value of J 3 to be 1500±400 .
We also find that galaxies with higher 100 μm/60 μm flux ratio, corresponding to cooler dust temperatures, are more strongly clustered than warmer galaxies. Splitting the survey into three colour subsamples, we find that, between 1 and 10  h −1 Mpc, the ratio of ξ is a factor of 1.5 higher for the cooler galaxies compared with the hotter galaxies. This is consistent with the suggestion that hotter galaxies have higher star formation rates, and correspond to later-type galaxies which are less clustered than earlier types.
Using volume-limited subsamples, we find a weak variation of ξ as a function of absolute luminosity, in the sense that more luminous galaxies are less clustered than fainter galaxies. The trend is consistent with the colour dependence of ξ and the observed colour–luminosity correlation, but the large uncertainties mean that it has a low statistical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号