首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between CO2-rich waters and basaltic glass was studied using reaction path modeling in order to get insight into the water-rock reaction process including secondary mineral composition, water chemistry and mass transfer as a function of CO2 concentration and reaction progress (ξ). The calculations were carried out at 25-90 °C and pCO2 to 30 bars and the results were compared to recent experimental observations and natural systems. A thermodynamic dataset was compiled from 25 to 300 °C in order to simulate mineral saturations relevant to basalt alteration in CO2-rich environment including revised key aqueous species for mineral dissolution reactions and apparent Gibbs energies for clay and carbonate solid solutions observed to form in nature. The dissolution of basaltic glass in CO2-rich waters was found to be incongruent with the overall water composition and secondary mineral formation depending on reaction progress and pH. Under mildly acid conditions in CO2 enriched waters (pH <6.5), SiO2 and simple Al-Si minerals, Ca-Mg-Fe smectites and Ca-Mg-Fe carbonates predominated. Iron, Al and Si were immobile whereas the Mg and Ca mobility depended on the mass of carbonate formed and water pH. Upon quantitative CO2 mineralization, the pH increased to >8 resulting in Ca-Mg-Fe smectite, zeolites and calcite formation, reducing the mobility of most dissolved elements. The dominant factor determining the reaction path of basalt alteration and the associated element mobility was the pH of the water. In turn, the pH value was determined by the concentration of CO2 and extent of reaction. The composition of the carbonates depended on the mobility of Ca, Mg and Fe. At pH <6.5, Fe was in the ferrous oxidation state resulting in the formation of Fe-rich carbonates with the incorporation of Ca and Mg. At pH >8, the mobility of Fe and Mg was limited due to the formation of clays whereas Ca was incorporated into calcite, zeolites and clays. Competing reactions between clays (Ca-Fe smectites) and carbonates at low pH, and zeolites and clays (Mg-Fe smectites) and carbonates at high pH, controlled the availability of Ca, Mg and Fe, playing a key role for low temperature CO2 mineralization and sequestration into basalts. Several problems of the present model point to the need of improvement in future work. The determinant factors linking time to low temperature reaction path modeling may not only be controlled by the primary dissolving phase, which presents challenges concerning non-stoichiometric dissolution, the leached layer model and reactive surface area, but may include secondary mineral precipitation kinetics as rate limiting step for specific reactions such as retrieved from the present reaction path study.  相似文献   

2.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

3.
李博  芮守超  赵志宏 《地质学报》2023,97(6):2084-2091
酸化是一种广泛应用于碳酸盐岩储层的增渗改造技术,其基本原理是将酸液注入储层裂隙,通过溶蚀反应使矿物溶解形成虫孔等通道,从而提高储层的渗透性和生产效率。以往的研究主要聚焦于优化注酸条件以提高成孔效率,忽略了碳酸盐岩酸化副产物CO2的影响。本研究针对三个含单裂隙的碳酸盐岩试样,开展不同浓度盐酸溶液的酸化实验,监测试样渗透率的变化;并在试验前后分别进行裂隙表面形貌激光扫描和内部空隙CT扫描,基于扫描结果对比分析了注酸条件对溶蚀效果的影响。研究结果表明:在流速、酸液浓度与种类等条件相同的条件下,CO2是否进入超临界态对虫孔形态有重要影响;超临界CO2可有效促进虫孔的生长,生成窄而长的虫孔,并显著提高溶蚀效果,试样的渗透率可提高3~9倍;而在CO2未进入超临界态的条件下,溶蚀形态接近面溶蚀或锥形虫孔,未贯通试样,试验前后渗透率没有显著变化,这是因为酸化反应产生的气态CO2会阻碍酸液的流动,从而降低酸化效果。本文结果揭示了在酸化中正面利用副产物CO2的可能性,有助于对现有酸化工程方案的优化和提升。  相似文献   

4.
火山岩吸附CO2气的成藏潜力及实例分析   总被引:4,自引:0,他引:4  
火山岩的脱气实验和对昌德东CO2气藏气源的分析结果表明加热火山岩到250℃时,脱出挥发分总量为0.0299~0.0790mL/g,其中CO2脱出量为0.0218~0.0706mL/g(0.429~1.387wt%);挥发组分以CO2为主,还含有H2、CO、CH4等还原性气体,以及少量低碳烷烃,CO2含量和总烃呈现反比关系;基性岩的CO2脱出量、脱出率高于中、酸性岩;CO2脱出量与岩石碱质含量正相关.松辽盆地北部昌德东CO2气藏成藏模式为"自生自储",成藏CO2气主要来自深部被火山岩吸附的气.随岩浆上升,在岩浆冷凝成火山岩的过程中被吸附于火山岩的节理、劈理和晶体位错之中的CO2气,连同火山岩包体中的残留气,成为高纯CO2气藏的主要补给源,并非地幔气体沿大断裂上来直接充注成藏.  相似文献   

5.
A model for the combined long-term cycles of carbon and sulfur has been constructed which combines all the factors modifying weathering and degassing of the GEOCARB III model [Berner R.A., Kothavala Z., 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182-204] for CO2 with rapid recycling and oxygen dependent carbon and sulfur isotope fractionation of an isotope mass balance model for O2 [Berner R.A., 2001. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta65, 685-694]. New isotopic data for both carbon and sulfur are used and new feedbacks are created by combining the models. Sensitivity analysis is done by determining (1) the effect on weathering rates of using rapid recycling (rapid recycling treats carbon and sulfur weathering in terms of young rapidly weathering rocks and older more slowly weathering rocks); (2) the effect on O2 of using different initial starting conditions; (3) the effect on O2 of using different data for carbon isotope fractionation during photosynthesis and alternative values of oceanic δ13C for the past 200 million years; (4) the effect on sulfur isotope fractionation and on O2 of varying the size of O2 feedback during sedimentary pyrite formation; (5) the effect on O2 of varying the dependence of organic matter and pyrite weathering on tectonic uplift plus erosion, and the degree of exposure of coastal lands by sea level change; (6) the effect on CO2 of adding the variability of volcanic rock weathering over time [Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci.306 (in press)]. Results show a similar trend of atmospheric CO2 over the Phanerozoic to the results of GEOCARB III, but with some differences during the early Paleozoic and, for variable volcanic rock weathering, lower CO2 values during the Mesozoic. Atmospheric oxygen shows a major broad late Paleozoic peak with a maximum value of about 30% O2 in the Permian, a secondary less-broad peak centered near the Silurian/Devonian boundary, variation between 15% and 20% O2 during the Cambrian and Ordovician, a very sharp drop from 30% to 15% O2 at the Permo-Triassic boundary, and a more-or less continuous rise in O2 from the late Triassic to the present.  相似文献   

6.
The aim of this experimental study was to evaluate and compare the geochemical impact of pure and impure CO2 on rock forming minerals of possible CO2 storage reservoirs. This geochemical approach takes into account the incomplete purification of industrial captured CO2 and the related effects during injection, and provides relevant data for long-term storage simulations of this specific greenhouse gas. Batch experiments were conducted to investigate the interactions of supercritical CO2, brine and rock-forming mineral concentrates (albite, microcline, kaolinite, biotite, muscovite, calcite, dolomite and anhydrite) using a newly developed experimental setup. After up to 42 day (1000 h) experiments using pure and impure supercritical CO2 the dissolution and solution characteristics were examined by XRD, XRF, SEM and EDS for the solid, and ICP–MS and IC for the fluid reactants, respectively. Experiments with mixtures of supercritical CO2 (99.5 vol.%) and SO2 or NO2 impurities (0.5 vol.%) suggest the formation of H2SO4 and HNO3, reflected in pH values between 1 and 4 for experiments with silicates and anhydrite and between 5 and 6 for experiments with carbonates. These acids should be responsible for the general larger amount of cations dissolved from the mineral phases compared to experiments using pure CO2. For pure CO2 a pH of around 4 was obtained using silicates and anhydrite, and 7–8 for carbonates. Dissolution of carbonates was observed after both pure and impure CO2 experiments. Anhydrite was corroded by approximately 50 wt.% and gypsum precipitated during experiments with supercritical CO2 + NO2. Silicates do not exhibit visible alterations during all experiments but released an increasing amount of cations in the reaction fluid during experiments with impure CO2. Nonetheless, precipitated secondary carbonates could not be identified.  相似文献   

7.
Understanding mechanisms and kinetics of mineral carbonation reactions relevant to sequestering carbon dioxide as a supercritical fluid (scCO2) in geologic formations is crucial to accurately predicting long-term storage risks. Most attention so far has been focused on reactions occurring between silicate minerals and rocks in the aqueous dominated CO2-bearing fluid. However, water-bearing scCO2 also comprises a reactive fluid, and in this situation mineral carbonation mechanisms are poorly understood. Using in situ high-pressure X-ray diffraction, the carbonation of brucite [Mg(OH)2] in wet scCO2 was examined at pressure (82 bar) as a function of water concentration and temperature (50 and 75 °C). Exposing brucite to anhydrous scCO2 at either temperature resulted in little or no detectable reaction over three days. However, addition of trace amounts of water resulted in partial carbonation of brucite into nesquehonite [MgCO3·3H2O] within a few hours at 50 °C. By increasing water content to well above the saturation level of the scCO2, complete conversion of brucite into nesquehonite was observed. Tests conducted at 75 °C resulted in the conversion of brucite into magnesite [MgCO3] instead, apparently through an intermediate nesquehonite step. Raman spectroscopy applied to brucite reacted with 18O-labeled water in scCO2 show it was incorporated into carbonate at a relatively high concentration. This supports a carbonation mechanism with at least one step involving a direct reaction between the mineral and water molecules without mediation by a condensed aqueous layer.  相似文献   

8.
The solubility of CO2 in dacitic melts equilibrated with H2O-CO2 fluids was experimentally investigated at 1250°C and 100 to 500 MPa. CO2 is dissolved in dacitic glasses as molecular CO2 and carbonate. The quantification of total CO2 in the glasses by mid-infrared (MIR) spectroscopy is difficult because the weak carbonate bands at 1430 and 1530 cm−1 can not be reliably separated from background features in the spectra. Furthermore, the ratio of CO2,mol/carbonate in the quenched glasses strongly decreases with increasing water content. Due to the difficulties in quantifying CO2 species concentrations from the MIR spectra we have measured total CO2 contents of dacitic glasses by secondary ion mass spectrometry (SIMS).At all pressures, the dependence of CO2 solubility in dacitic melts on xfluidCO2,total shows a strong positive deviation from linearity with almost constant CO2 solubility at xCO2fluid > 0.8 (maximum CO2 solubility of 795 ± 41, 1376 ± 73 and 2949 ± 166 ppm at 100, 200 and 500 MPa, respectively), indicating that dissolved water strongly enhances the solubility of CO2. A similar nonlinear variation of CO2 solubility with xCO2fluid has been observed for rhyolitic melts in which carbon dioxide is incorporated exclusively as molecular CO2 (Tamic et al., 2001). We infer that water species in the melt do not only stabilize carbonate groups as has been suggested earlier but also CO2 molecules.A thermodynamic model describing the dependence of the CO2 solubility in hydrous rhyolitic and dacitic melts on T, P, fCO2 and the mol fraction of water in the melt (xwater) has been developed. An exponential variation of the equilibrium constant K1 with xwater is proposed to account for the nonlinear dependence of xCO2,totalmelt on xCO2fluid. The model reproduces the CO2 solubility data for dacitic melts within ±14% relative and the data for rhyolitic melts within 10% relative in the pressure range 100-500 MPa (except for six outliers at low xCO2fluid). Data obtained for rhyolitic melts at 75 MPa and 850°C show a stronger deviation from the model, suggesting a change in the solubility behavior of CO2 at low pressures (a Henrian behavior of the CO2 solubility is observed at low pressure and low H2O concentrations in the melt). We recommend to use our model only in the pressure range 100-500 MPa and in the xCO2fluid range 0.1-0.95. The thermodynamic modeling indicates that the partial molar volume of total CO2 is much lower in rhyolitic melts (31.7 cm3/mol) than in dacitic melts (46.6 cm3/mol). The dissolution enthalpy for CO2 in hydrous rhyolitic melts was found to be negligible. This result suggests that temperature is of minor importance for CO2 solubility in silicic melts.  相似文献   

9.
Carbon Capture Sequestration (CCS) projects require, for safety reasons, monitoring programmes focused on surveying gas leakage on the surface. Generally, these programmes include detection of chemical tracers that, once on the surface, could be associated with CO2 degassing. We take a different approach by analysing feasibility of applying electrical surface techniques, specifically Self-Potential. A laboratory-scale model, using water-sand, was built for simulating a leakage scenario being monitored with non-polarisable electrodes. Electrical potentials were measured before, during and after gas injection (CO2 and N2) to determine if gas leakage is detectable. Variations of settings were done for assessing how the electrical potentials changed according to size of electrodes, distance from electrodes to the gas source, and type of gas. Results indicated that a degassing event is indeed detectable on electrodes located above injection source. Although the amount of gas could not be quantified from signals, injection timespan and increasing of injection rate were identified. Even though conditions of experiments were highly controlled contrasting to those usually found at field scale, we project that Self-Potential is a promising tool for detecting CO2 leakage if electrodes are properly placed.  相似文献   

10.
为解决我国高瓦斯煤层渗透性差导致瓦斯抽采率低的难题,利用超临界二氧化碳强扩散和溶解增透等独特优点,采用自制三轴渗透实验装置,开展不同温度下超临界二氧化碳作用后煤的宏观增透实验,在宏观增透实验基础上进行煤微观扫描成像实验。结果表明:恒定体积应力和孔隙压力条件下,不同温度超临界二氧化碳作用后,煤的渗透率较增透前提高一个数量级,但在二氧化碳的超临界温度范围内,煤的渗透率随温度增加呈负指数变化规律。超临界二氧化碳作用后,煤微观孔隙率较增透前提高两个数量级,随着温度增加,煤微观孔裂隙的演化速率减慢,孔隙率随温度增加呈负指数变化规律。宏微观实验数据同时表明,煤宏观渗透率随微观孔隙率增加而增大。超临界二氧化碳增透过程中,孔隙压力对低渗透煤层的增透效果起主控作用。  相似文献   

11.
CO2 injected in the reservoir of McElroy Field, TX, for a CO2 flood was in the supercritical state. Supercritical CO2 fluid is capable of extracting light and intermediate hydrocarbons from rocks but is unable to extract heavy hydrocarbons and asphaltics. Therefore, plugging of asphaltics in reservoir rocks and a consequent reduction in injectivity and recovery may result when CO2 only is used in enhanced oil recovery. By adding common solvents as chemical modifiers, the flooding fluid shows marked improvement in solvency for heavy components of crudes due to its increased density and polarity. Numerous supercritical CO2 fluid extractions of dolomite rock from the Grayburg Formation containing known amount of spiked McElroy crude oil have been carried out to evaluate extraction efficiencies of CO2 and CO2 with chemical modifiers at various temperatures and pressures. All experiments show that extraction efficiency increases with increasing CO2 pressure but decreases with increasing temperature. Addition of chemical modifiers to CO2 also shows improved extraction efficiency and reduced asphaltic deposits. Under the pressure and temperature similar to McElroy reservoir conditions; chemically modified CO2 yielded almost 3 times as much oil extracts as those in extractions with CO2 only. It also reduced the asphaltics content in extracted rocks to nearly one half; indicating its potential for mitigating asphaltics plugging of formation rocks  相似文献   

12.
Presently many research projects focus on the reduction of anthropogenic CO2 emissions. It is intended to apply underground storage techniques such as flue gas injection in unminable coal seams. In this context, an experimental study has been performed on the adsorption of pure CO2 and preferential sorption behavior of flue gas. A coal sample from the Silesian Basin in Poland (0.68% V Rr), measured in the dry and wet state at 353 K has been chosen for this approach. The flue gas used was a custom class industrial flue gas with 10.9% of CO2, 0.01% of CO, 9% of H2, 3.01% of CH4, 3.0% of O2, 0.106% of SO2 and nitrogen as balance.Adsorption isotherms of CO2 and flue gas were measured upto a maximum of 11 MPa using a volumetric method. Total excess sorption capacities for CO2 on dry and wet Silesia coal ranged between 1.9 and 1.3 mmol/g, respectively. Flue gas sorption capacities on dry and wet Silesia coal were much lower and ranged between 0.45 and 0.2 mmol/g, respectively, at pressures of 8 MPa. The low sorption capacity of wet coal has resulted from water occupying some of the more active adsorption sites and hence reducing the heterogeneity of adsorption sites relative to that of dry coal. Desorption tests with flue gas were conducted to study the degree of preferential sorption of the individual components. These experiments indicate that CO2 is by far the prefered sorbing component under both wet and dry conditions. This is followed by CH4. N2 adsorbs very little on the coal in the presence of CO2 and CH4. It is also observed that the adsorption of CO2 onto coal is not significantly hindered by the addition of other gases, other than dilution effect of the pressure.In addition to the sorption experiments, the density of the flue gas mixture has been determined up to 18 MPa at 318 K. A very good precision of these measurements were documented by volumetric methods.  相似文献   

13.
超临界CO2能够破坏煤分子结构,提高生物甲烷的产量。为研究微生物在超临界CO2参与的煤储层原位条件下的产气潜力,以新疆地区某煤层气区块目标煤层的初始储层压力、温度和气体组分作为原位储层条件,通过自主设计的煤储层原位厌氧发酵装置,模拟煤储层原位储层条件下的厌氧发酵过程,并对生物气产量、煤的官能团结构和微生物群落结构进行了分析。研究结果表明,在超临界CO2参与的煤储层原位条件下,生物甲烷产量达到了32.9 mL/g,CO2的生物转化率为17.4%。FTIR光谱表明,原位条件下微生物对苯酚、醇、醚、酯中含氧基团的降解能力要强于常规条件下的厌氧发酵。超临界CO2参与下的储层原位厌氧发酵系统中,多种产甲烷代谢途径的产甲烷菌(氢营养型、乙酸营养型和甲基营养型)逐渐向单一的氢营养型产甲烷菌演化。高压环境下,细菌群落中芽孢杆菌Solibacillus silvestris成为水解产酸发酵阶段的优势菌。该研究为煤层气生物工程的现场实施和碳减排提供了实验基础。   相似文献   

14.
超临界CO2对煤化学结构的改造对煤层CO2封存能力极为关键。论文开展了模拟埋深1500m (62.5℃、15 MPa)条件下4组不同变质程度煤的ScCO2-H2O体系与煤岩地球化学反应实验。通过傅里叶变换红外光谱和X射线粉末衍射实验获得了反应前后煤化学结构演化特征,探讨了煤化学结构演化的机理。结果表明:ScCO2作用后,煤中脂肪烃链长度普遍增加,仅肥煤的芳香烃丰度增大,肥煤、瘦煤和贫煤含氧基团丰度的增大主要由氢键基团含量的增加贡献,无烟煤含氧基团丰度则主要受低分子化合物溶出的影响。ScCO2引起的溶胀作用造成肥煤和瘦煤芳香层面之间交联键断裂,芳香微晶内部结构疏松,而芳香层面内CAr-CAr交联的形成提高了肥煤和瘦煤芳香性和芳香环缩合度;贫煤和无烟煤中非稠合多苯结构脱落使芳香微晶内部更紧凑,脂肪烃链长度的增加则降低了贫煤和无烟煤芳香性和芳香环缩合度。  相似文献   

15.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

16.
To understand the effects of increased levels of CO2 on the marine realm, it is possible to study areas where, for natural reasons, there are emissions of CO2 from the seabed. One of these areas is located east of Panarea Island (Aeolian Islands – Southern Tyrrhenian Sea – Italy). Here, the volcanic activity that characterizes the Aeolian archipelago causes a continuous release of CO2 (up to 98% of the total gas) from several vents on the seafloor in shallow water. This area was studied by means of surface techniques and direct SCUBA diving surveys; the data presented refers to a field campaign performed in 2008. To collect the necessary data, some dedicated sampling and measuring techniques were developed for use in an underwater environment. The chemistry of the fluids and their influence on the water body was determined via logs and transects in the field and by gas-chromatographic and liquid-chromatographic laboratory analysis. The flux from some of the main gas vents was also measured directly underwater. Furthermore, some laboratory experiments in a two-layer stratified fluid were conducted to understand the main features of the physical interaction of a gas plume with the surrounding environment. Both field and laboratory experiments show that there is a development of a pseudo-convective cell around the rising plume with the formation of vortices that act as a physical barrier thus reducing the interaction between the plume and the surrounding water.  相似文献   

17.
The melting temperatures of calcite and magnesite in the presence of excess CO2 have been measured using Ag2C2O4 in sealed capsules m a piston-cylinder apparatus. At 27 kbar, 11.5 wt % CO2 dissolves in molten CaCO2, depressing the freezing temperature from 1610 to 1505°C; and 6.5 wt % CO2 dissolves in molten MgCO3, depressing the freezing temperature from 1590 to 1510°C. The eutectic between calcite and lime was located at 1385°C at 27 kbar. These and other new results, combined with previously published data, permit completion of PT diagrams for the systems CaO-CO2 and MgO-CO2 from 1 bar to 35 kbar. The dissociation curve for each carbonate terminates at an invariant point where melting begins, at 40 bars and 1230°C for CaO-CO2 and 23 kbar and 1550°C for MgO-CO2 The differences between the two systems are explained by the different solubilities of CO2 in the invariant liquids consequent upon the large pressure difference between the locations of these two invariant points. The results show that the temperatures for the beginning of melting of carbonates in the asthenosphere are lowered by about 100°C in the presence of CO2.  相似文献   

18.
地下深部封存CO2已经被公认是人类削减温室气体排放的一条有效而又科学的途径。深部咸含水层CO2地质封存因封存潜力巨大,技术可行,且已有实际的工程运行,因而备受关注。松辽盆地是中国潜在的CO2储存场地之一,选择松辽盆地为大尺度模拟研究对象,选取姚家组砂岩层为储层,选取嫩江组泥岩为盖层,运用TOUGH-MP并行计算代码建立了覆盖整个松辽盆地的三维地质模型,在中央凹陷区开展大尺度CO2注入模拟研究,包括CO2运移、储存、地层压力提升以及储存安全性等问题。模拟结果表明:持续注入100a后形成的CO2羽远小于产生的压力积聚区影响范围。注入产生的压力抬升将在注入停止后迅速消散,不会对区域地层压力和浅层地下水系统产生显著影响。在千年之内注入的CO2将随着时间持续,逐渐溶解于水中,而不会因盖层微弱的渗透性而逃逸。  相似文献   

19.
We have analysed the kinetics of Argon and CO2 diffusion in simplified iron free rhyolitic to hawaiitic melts using the diffusion couple technique. The concentration distance profiles of Ar and CO2 were measured with electron microprobe analysis and Fourier Transform Infrared Spectroscopy, respectively. Error functions were fitted to the symmetrical concentration distance profiles to extract the diffusion coefficients.In the temperature range 1373 to 1773 K the activation energies for Ar diffusion range from 169 ± 20 to 257 ± 62 kJ mol−1. Ar diffusivity increases exponentially with the degree of depolymerisation. In contrast, the mobility of total CO2, that is identical to Ar mobility in rhyolitic melt, keeps constant with changing bulk composition from rhyolite to hawaiite. CO2 speciation at 1623 K and 500 MPa was modeled for the range of compositions studied using the diffusion data of Ar and total CO2 in combination with network former diffusion calculated from viscosity data. Within error this model is in excellent agreement with CO2 speciation data extrapolated from temperatures near the glass transition temperature for dacitic melt composition. This model shows that even in highly depolymerised hawaiitic and tholeiitic melts molecular CO2 is a stable species and contributes 70 to 80% to the total CO2 diffusion, respectively.  相似文献   

20.
Edet E. Isuk 《Lithos》1983,16(1):17-22
The effects of excess SiO2 and CO2 on the solubility of molybdenite in hydrous sodium disilicate melts were experimentally determined at 680 bars and 650°C. The molybdenite solubility decreases with increasing SiO2 and CO2. Under the experimental conditions, the MoS2 content of the vapor-saturated liquid decreases from 10 wt.% to 2.5 wt.% at SiO2 saturation. In the presence of CO2, the solubility decreases to 4.6 wt.% MoS2 and becomes negligible at high PCO2. These results are explained as deriving from the increased polymerization and hence decreased NBO/Si ratio of the melt with increasing SiO2 content and CO2, respectively. Sulfur dissolves principally as SO4?2 at the relatively high fo2 of the experiments. Consequently, the effect of sulfur is to lower the Mo solubility by effectively decreasing the NBO/Si ratio of the melt. Sulfur saturation is, therefore, likely to be a limiting factor in the Mo content of alkali silicate melts because of the chalcophile affinities of molybdenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号