首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
传统抗弯钢框架的梁柱节点通常设计为刚性连接,这种刚性节点具有很大的抗弯刚度,然而节点延性不足,罕遇地震作用导致节点脆性断裂.研究学者提出了多种解决该问题的思路,例如半刚性连接节点、节点加强或削弱方法使塑性铰外移等.本文提出了一种简化的梁柱节点连接方式-铰接连接,改变梁柱节点的传力方式,在节点处设置隅撑提供框架的抗侧刚度...  相似文献   

2.
高强钢组合K型偏心支撑框架耗能梁段和支撑采用Q345钢,其余构件采用Q460钢,不仅能有效减小构件截面、节约钢材、降低造价,而且有助于推广高强钢的应用。为了比较高强钢组合K型偏心支撑框架与Q345钢K型偏心支撑框架的抗震性能,在试验研究的基础上,设计两组共8个不同层数的高强钢组合K型偏心支撑框架与Q345钢K型偏心支撑框架,并分别对其进行非线性静力推覆分析和动力时程分析,对比分析两种结构形式的承载力、刚度、延性以及地震作用下层间变形能力和耗能梁段。结果表明:在满足抗震性能要求的前提下,相同设计条件下高强钢组合K型偏心支撑框架变形略差于Q345钢K型偏心支撑框架,但是其构件截面较小,可以节省钢材,降低工程造价,具有较高的经济效益。  相似文献   

3.
高强钢组合偏心支撑钢框架是一种新型的抗震结构体系,为分析其抗震性能,利用ABAQUS有限元软件建立了简化分析模型。在验证该简化模型合理有效的基础上,建立了某十层算例的整体模型,施加竖向荷载的同时施加水平倒三角形循环荷载作用,进而分析了该算例的滞回性能。研究表明:本文提出的简化分析模型不仅可以较准确的模拟该结构体系的延性和抗侧刚度,还可以有效预测结构的变形分布和非线性性能。  相似文献   

4.
耗以支撑钢筋混凝土框架结构抗震性能研究   总被引:2,自引:0,他引:2  
本文通过普通钢筋混凝土框架、耗能支撑钢筋混凝土框架结构1/8比例模型的地震模拟震动台对比试验,研究两类框架结构在地震作用下的破坏形态和动力特征,揭示了耗能支撑钢筋混凝土框架结构良好的抗震性能;以试验模型进行了弹塑性时程分析,理论分析和试验结果符合较好;结合场州电厂二期主厂房框架结构,研究了其纵向框架结构采用耗能支撑体系时结构的抗震性能,为该类结构形式的工程应用提供依据。  相似文献   

5.
底层带支撑异型柱框架抗震分析初探   总被引:6,自引:0,他引:6  
本文在底层带支撑异型柱框架模型试验研究基础上,按抗震分析需要,对结构抗震性能问题、模型问题、填充墙刚度问题等进行了初步研究。简述了抗震分析方法,提出了供抗震设计参考的建议。  相似文献   

6.
通过有限元软件OpenSees对采用了T型钢锚固型节点的一个两层三跨屈曲约束支撑混凝土框架进行了模拟,并与试验结果对比,来验证模拟结果的准确性。在此基础上,对试验框架的原屈曲约束支撑结构体系进行抗震性能分析。结果表明:有限元分析结果与试验结果吻合良好,OpenSees可以准确的模拟屈曲约束支撑混凝土框架的受力性能;屈曲约束支撑混凝土框架具有良好的耗能性与水平承载力;屈曲约束支撑框架体系具有较好的抗震性能;屈曲约束支撑能够增加结构体系的侧向刚度,有效控制结构变形。  相似文献   

7.
提出了沿异型住框架楼层变刚度设支撑的设计方法,进行了1/3结构模型试验研究,测试分析了弹性侧移刚度、结构的承载力、延性、滞回曲线、破坏机制及刚度衰减特性。计算所得的结构弹性侧移刚度与实测值符合较好.  相似文献   

8.
基于4个梁端翼缘扩大型节点试件和1个传统节点试件的低周循环加载试验,对直接圆弧扩翼型节点和加侧板扩翼型节点2种钢框架扩翼型节点采用ANSYS软件进行了往复荷载作用下的节点性能有限元分析,研究了这2种不同型式的梁端扩翼节点的破坏形态、荷载-位移滞回曲线、骨架曲线、极限荷载、延性和耗能系数等抗震性能,其结果与试验结果吻合较好.研究结果表明,通过合理地设计扩翼截面,圆弧扩翼型节点和侧板扩翼型节点均能有效的将塑性铰移出焊缝热影响区,且较传统节点具有更强的承载力、延性和耗能能力,能满足我国现行抗震规范的要求.另外,圆弧扩翼型节点构造相对简单,扩翼处连接焊缝少,可避免焊接热影响区母材变脆而发生脆性撕裂,其抗震性能要优于梁端翼缘侧板加强型节点.  相似文献   

9.
为了研究自复位中心支撑钢框架(SC-CBF)结构的抗震性能,对一四层SC-CBF结构进行了静力弹塑性分析、低周往复加载分析和动力弹塑性时程分析,并与中心支撑钢框架(CBF)结构进行对比,探究了不同GAP单元刚度和预应力筋截面积对SC-CBF结构自复位性能及抗震性能的影响规律。结果表明:与传统CBF结构相比,SC-CBF结构的抗侧能力强,地震作用下基底剪力小,卸载后的残余变形较小,具有良好的延性性能;在极罕遇地震作用下SC-CBF结构的位移响应大,耗散的能量多,层间位移角大而残余位移小,表现出良好的自复位性能和抗震性能;GAP单元刚度对预应力筋的受力性能影响较为明显,对结构的整体受力性能和延性性能影响较小,但结构的整体受力性能和延性性能受预应力筋截面积影响显著。  相似文献   

10.
地震作用会造成钢筋混凝土框架发生平面和垂直方向的变形,导致其结构受到更大的地震力,加剧损伤程度。形状记忆合金(SMA)材料在外力作用下能够快速恢复变形前形状,降低框架损伤程度,进一步提高框架结构的承载能力和稳定性。基于此,有必要研究形状记忆合金混凝土框架建筑的抗震性能。以某实际工程为例,采用ANSYS软件建立钢筋混凝土框架有限元模型,选取天津地震波、北岭地震波、印度洋地震波及人工地震波作为地震震动输入,记录地震震动下时程结果。研究结果表明,预应力筋断裂后,该结构在地震作用下的滞回曲线为饱满的旗帜形,最大层间位移为1/125,残余变形在±10 mm之间,最高峰值荷载为211 kN,水平承载力较强,表明其自复位性能较高、地震响应效果较优、抗震承载力较强,可以有效提高建筑结构的安全性和可靠性。  相似文献   

11.
Special concentrically braced frames (SCBFs) are commonly used as the lateral‐load resisting system in buildings. SCBFs primarily sustain large deformation demands through inelastic action in the brace, including compression buckling and tension yielding; secondary yielding may occur in the gusset plate and framing elements. The preferred failure mode is brace fracture. Yielding, buckling, and fracture behavior results in highly nonlinear behavior and accurate analytical modeling of these frames is required. Prior research has shown that continuum models are capable of this level of simulation. However, those models are not suitable for structural engineering practice. To enable the use of accurate yet practical nonlinear models, a research study was undertaken to investigate modeling parameters for line‐element models, which is a more practical modeling approach. This portion of the study focused on methods to predict brace fracture. A fracture modeling approach simulated the nonlinear, cyclic response of SCBFs by correlating onset of fracture to the maximum strain range in the brace. The model accounts for important brace design parameters including slenderness, compactness, and yield strength. Fracture data from over 40 tests was used to calibrate the model and included single‐brace component, single story frame, and full‐scale multistory frame specimens. The proposed fracture model is more accurate and simpler than other, previously proposed models. As a result, the proposed model is an ideal candidate for practical performance simulation of SCBFs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Inelastic deformation capacity of links is a factor that significantly influences design of steel eccentrically braced frames (EBFs). The link rotation angle is used to describe inelastic link deformation. The link rotation angle is generally calculated by making use of design story drifts that in turn are calculated by modifying the elastic displacements by a displacement amplification factor. This paper presents a numerical study undertaken to evaluate the displacement amplification factor given in ASCE7‐10 for EBFs and the rigid‐plastic mechanism used for calculating link rotation angles. A total of 72 EBFs were designed by considering the number of stories, the bay width, the link length to bay width ratio, and the seismic hazard level as the prime variables. All structures were analyzed using elastic and inelastic time history analyses. The results indicated that the displacement amplification factor given in ASCE7‐10 provides unconservative estimates of the story drifts. On the other hand, the rigid‐plastic mechanism provides conservative estimates of link rotations. Based on the results of the numerical study, a new set of displacement amplification factors that vary along the height of the structure and modifications to the rigid‐plastic mechanism were developed. In light of the proposed modifications, the EBFs were redesigned and analyzed using inelastic time history analysis. The results indicated that the proposed modifications provide improvements for the displacement amplification factor and link rotation angle calculation procedures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
本文在总结钢支撑滞回性能及高层双重抗侧力体系研究现状的基础上,分析了现象学、物理学及有限元3种钢支撑模拟方法的优缺点,并针对现有支撑模拟方法及支撑疲劳累积损伤研究的不足提出了可行的改进方法。分析了框架一中心支撑双重体系研究中若干关键性问题之后,指出了我国《高层民用建筑钢结构技术规程》(JGJ99-98)等有关规范中关于双重体系设计相关条款存在的分歧及不足,并提出了通过双重结构体系在罕遇地震下的反应特性模拟分析来统一认识的建议。  相似文献   

14.
Axially loaded members might experience compressive forces above their static buckling capacity because of dynamic buckling under rapid shortening. Although the subject is studied in the context of engineering mechanics, it has not been thoroughly investigated in the field of earthquake engineering. Such dynamic overshoots in the compressive capacity can also be observed for braces of concentrically braced frames (CBFs) during earthquakes. Consequently, a comprehensive investigation is conducted in this study regarding the effects of dynamic buckling of braces on the seismic behavior of steel CBFs. After providing a theoretical background, recent dynamic experiments on braces and CBFs are simulated and discussed to investigate the occurrence of dynamic overshoot during these tests. Eight archetype CBFs are then designed, modeled, and subjected to a large set of ground motions to provide a quantified insight on the frequency and anticipated level of dynamic overshoot in the compressive capacity of braces during earthquakes. Results of a total of 1600 nonlinear time history analyses revealed that dynamic overshoots occur frequently in braces and affect the behavior of CBFs notably. Considerable increases are recorded in forces transmitted to other members of CBFs as a consequence of such dynamic overshoots. Importance of incorporating these dynamic overshoots in the capacity design procedure of columns, beams, and gusset plates is highlighted. Furthermore, results of a parametric study are presented and summarized in the form of a simple formula that can be used as a guide for estimating the level of dynamic overshoot.  相似文献   

15.
Current seismic design requirements for special concentrically braced frames (SCBFs) in chevron configurations require that the beams supporting the braces be designed to resist the demands resulting from the simultaneous yielding of the tension brace and degraded, post-buckling strength of the compression brace. Recent research, including large-scale experiments and detailed finite-element analyses, has demonstrated that limited beam yielding is not detrimental to chevron braced frame behavior and actually increases the story drift at which the braces fracture. These findings have resulted in new expressions for computing beam demands in chevron SCBFs that reduce the demand in the tension brace to be equal to the expected compressive capacity at buckling of the compression brace. In turn, the resultant force on the beam is reduced as is the required size of the beam. Further study was undertaken to investigate the seismic performance of buildings with SCBFs, including chevron SCBFs with and without yielding beams and X-braced frames. Prototype three- and nine-story braced frames were designed using all three framing systems, that is, chevron, chevron with yielding beams, and X SCBFs, resulting in six building frames. The nonlinear dynamic response was studied for ground motions simulating two different seismic hazard levels. The results were used to characterize the seismic performance in terms of the probability of salient damage states including brace fracture, beam vertical deformation, and collapse. The results demonstrate that the seismic performance of chevron SCBFs with limited beam yielding performs as well as or better than the conventionally designed chevron and X SCBFs.  相似文献   

16.
Structural damage in buildings designed according to the dissipative design philosophy can be significant, even under moderate earthquakes. Repair of damaged members is an expensive operation and may affect building use, which in turn increases the overall economic loss. If damage can be isolated to certain dissipative members realized to be removable following an earthquake, the repair costs and time of interruption of building use can be reduced. Dual structural configurations, composed of a rigid subsystem with removable ductile elements and a flexible subsystem, are shown to be appropriate for the application of removable dissipative element concept. Eccentrically braced frames with removable links connected to the beams using flush end‐plate bolted connections are investigated as a practical way of implementing this design concept. High‐strength steel is used for members outside links in order to enhance global seismic performance of the structure by constraining plastic deformations to removable links and reducing permanent drifts of the structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The corner gusset plates in a steel braced frame can be subjected to forces not only from the brace but also from the effects of the frame actions. In this study, several finite element models are constructed to analyze the gusset‐to‐beam and gusset‐to‐column interface forces. It is found that the frame actions affect the gusset interface force distributions significantly. A simplified strut model to represent the gusset plate is adopted to evaluate the frame action forces. In addition, the generalized uniform force method is adopted as it provides more freedom for designers to configure the gusset plate shapes than using the uniform force method. In this paper, a performance‐based design method is proposed. The gusset interface force demands take into account the combined effect of the brace maximum axial force capacity and the peak beam shear possibly developed in the frame. The specimen design and key results of a series of full‐scale three‐story buckling‐restrained braced frame (BRBF) hybrid tests are discussed. The gusset interface cracks observed at inter‐story drift greater than 0.03 radians can be well predicted by using the proposed design method. The BRBF tests and analyses confirm that the proposed design method is reasonable. The effectiveness of varying the width of gusset edge stiffeners in reducing the gusset tip stress concentrations is also investigated. This paper concludes with recommendations for the seismic design of BRBF corner gusset plates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
为了研究耗能段与RC框架梁采用不同连接节点形式对Y形偏心钢支撑RC框架结构滞回性能的影响,进行了2榀1/3缩尺Y形偏心钢支撑RC框架的低周反复荷载试验。介绍了试验过程,分析了试件在循环荷载作用下的破坏机理、滞回性能、延性、刚度退化规律以及耗能能力。试验结果表明:应用Y形偏心钢支撑加固RC框架合理可行,Y形偏心钢支撑承担了结构80%以上的水平荷载;U型外包钢与框架横梁连接的试件连接节点承载能力较高,耗能段耗能充分,结构的滞回曲线饱满;钢板与框架横梁底部连接的试件滞回曲线捏缩,耗能段耗能不充分,结构整体耗能能力差;U形外包钢与框架横梁连接的试件,耗能段破坏导致结构失效;钢板与框架梁底部连接的试件,连接节点破坏导致结构失效。  相似文献   

19.
本文提出了一种新型形状记忆合金(Shape Memory Alloy,SMA)-黏弹性阻尼器(ViscoelasticDamper,VED)自复位支撑,设计了普通预应力筋自复位支撑钢框架与SMA-VED自复位支撑钢框架。采用组合模型以及改进材料模型准确模拟了支撑的力学行为,详细讨论了考虑构件失效的模拟方法,通过试验确定了VED的失效应变范围,最后基于概率统计方法进行了易损性分析以及全周期风险分析。研究发现: SMA-VED自复位支撑可显著提升框架抗震性能;倒塌风险以及残余变形超越概率均显著低于普通预应力筋自复位支撑钢框架,下降比例最高超过50%。预应力筋断裂失效导致框架倒塌风险可提高5倍以上; SMA-VED自复位支撑失效会造成残余变形超越概率有所上升但幅度不大。总体来说,SMA-VED自复位支撑钢框架具备更好的地震鲁棒性。  相似文献   

20.
Controlled rocking steel braced frames (CRSBFs) have been proposed as a low‐damage seismic force resisting system with reliable self‐centring capabilities. Vertical post‐tensioning tendons are designed to self‐centre the system after rocking, and energy dissipation may be provided to limit the peak displacements. The post‐tensioning and energy dissipation can be designed using simple methods that rely primarily on the first‐mode response. However, the frame member forces are highly influenced by the higher‐mode response, resulting in more complex methods to design the frame members. This paper examines previous proposals and also proposes two new capacity design methods for CRSBFs. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static method that does not require any modifications to the elastic frame model, instead using theory‐based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration. The dynamic procedure is used to design two sets of CRSBFs with three, six, nine, twelve and eighteen stories, one set using a response modification factor of R = 8 and the other using up to R = 20. Based on the results of 800 nonlinear time history analyses, both methods are generally more accurate than the previous capacity design methods and at least as simple to implement. Finally, the displacement results suggest that taller CRSBFs designed using could still limit interstorey drifts to approximately 2.5% at the maximum considered earthquake level in the cases considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号