共查询到20条相似文献,搜索用时 15 毫秒
1.
Impact of climate change on Pacific Northwest hydropower 总被引:2,自引:0,他引:2
The Pacific Northwest (PNW) hydropower resource, central to the region’s electricity supply, is vulnerable to the impacts
of climate change. The Northwest Power and Conservation Council (NWPCC), an interstate compact agency, has conducted long
term planning for the PNW electricity supply for its 2005 Power Plan. In formulating its power portfolio recommendation, the
NWPCC explored uncertainty in variables that affect the availability and cost of electricity over the next 20 years. The NWPCC
conducted an initial assessment of potential impacts of climate change on the hydropower system, but these results are not
incorporated in the risk model upon which the 2005 Plan recommendations are based. To assist in bringing climate information
into the planning process, we present an assessment of uncertainty in future PNW hydropower generation potential based on
a comprehensive set of climate models and greenhouse gas emissions pathways. We find that the prognosis for PNW hydropower
supply under climate change is worse than anticipated by the NWPCC’s assessment. Differences between the predictions of individual
climate models are found to contribute more to overall uncertainty than do divergent emissions pathways. Uncertainty in predictions
of precipitation change appears to be more important with respect to impact on PNW hydropower than uncertainty in predictions
of temperature change. We also find that a simple regression model captures nearly all of the response of a sequence of complex
numerical models to large scale changes in climate. This result offers the possibility of streamlining both top-down impact
assessment and bottom-up adaptation planning for PNW water and energy resources. 相似文献
2.
西北太平洋热带气旋气候变化的若干研究进展 总被引:2,自引:11,他引:2
热带气旋气候变化研究不仅是当前国际热带气旋气候界的热点科学问题,而且也是具有现实意义的社会问题,各国气象学者和科学家们对此进行了广泛的研究。虽然热带气旋活动与气候变化之间的关系及其相应的内在物理机制至今还处在探究之中,但是近20多年来热带气旋气候学的研究还是取得了显著的进展。本文主要针对濒临中国的西北太平洋海域,回顾了热带气旋活动季节内、年际、年代际变化及其全球变暖背景下的变化趋势的气候学研究。此外,文中也对西北太平洋热带气旋气候学的研究进行了展望,并提出了该领域中一些亟待解决的科学问题。 相似文献
3.
利用观测海温资料和CMIP5模式模拟结果分析西北太平洋(120°E~120°W,20~60°N)海表温度的气候态和年代际变化特征。结果表明,所选22个模式可以较好地模拟出西北太平洋海表温度的气候特征及其年际、年代际变化特征;模式模拟的海表温度总体标准偏差在黑潮延伸体区域最大;绝大多数模式能模拟出海表温度的第一EOF模态;西北太平洋海表温度具有较明显的年代际振荡现象,13/22的模式模拟的海表温度存在明显的年代际振荡,同时海表温度气候态的模拟偏差对其周期振荡模拟的影响较大,尤其在黑潮延伸体区域。 相似文献
4.
Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean 总被引:1,自引:2,他引:1
Jasti Sriranga Chowdary Shang-Ping Xie Jing-Jia Luo Jan Hafner Swadhin Behera Yukio Masumoto Toshio Yamagata 《Climate Dynamics》2011,36(3-4):607-621
A seasonal forecast system based on a global, fully coupled ocean?Catmosphere general circulation model is used to (1) evaluate the interannual predictability of the Northwest Pacific climate during June?CAugust following El Ni?o [JJA(1)], and (2) examine the contribution from the tropical Indian Ocean (TIO) variability. The model retrospective forecast for 1983?C2006 captures major modes of atmospheric variability over the Northwest Pacific during JJA(1), including a rise in sea level pressure (SLP), an anomalous anticyclone at the surface, and a reduction in subtropical rainfall, and increased rainfall to the northeast over East Asia. The anomaly correlation coefficient (ACC) for the leading principal components (PCs) of SLP and rainfall stays above 0.5 for lead time up to 3?C4?months. The predictability for zonal wind is slightly better. An additional experiment is performed by prescribing the SST climatology over the TIO. In this run, designated as NoTIO, the Northwest Pacific anticyclone during JJA(1) weakens considerably and reduces its westward extension. Without an interactive TIO, the ACC for PC prediction drops significantly. To diagnose the TIO effect on the circulation, the differences between the two runs (Control minus NoTIO) are analyzed. The diagnosis shows that El Nino causes the TIO SST to rise and to remain high until JJA(1). In response to the higher than usual SST, precipitation increases over the TIO and excites a warm atmospheric Kelvin wave, which propagates into the western Pacific along the equator. The decrease in equatorial SLP drives northeasterly wind anomalies, induces surface wind divergence, and suppresses convection over the subtropical Northwest Pacific. An anomalous anticyclone forms in the Northwest Pacific, and the intensified moisture transport on its northwest flank causes rainfall to increase over East Asia. In the NoTIO experiment, the Northwest Pacific anticyclone weakens but does not disappear. Other mechanisms for maintaining this anomalous circulation are discussed. 相似文献
5.
J. Rosinski 《Atmospheric Research》1991,26(6)
Some cloud condensation nuclei (CCN) constitute a reservoir of latent ice-forming nuclei (IFN) active by condensation-followed-by-freezing and by sorption. Evaporated droplets occasionally left aerosol particles that acted as sorption IFN at temperatures as high as −5°C and water vapor supersaturation over ice of 0.2%. The newly formed aerosol particles (residues of evaporated droplets) are all mixed particles. The discovery of IFN produced from CCN promotes new insights into the process of ice formation in clouds; in an evaporating parcel of a cloud the rate of formation of ice particles will be enhanced by continuous production of IFN. Aerosol particles left behind after evaporation of a cloud may provide a source of IFN for formation of some of the cirrus clouds. 相似文献
6.
Alan F. Hamlet Se-Yeun Lee Kristian E. B. Mickelson Marketa M. Elsner 《Climatic change》2010,102(1-2):103-128
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration. 相似文献
7.
Lodgepole pine (Pinus contorta Dougl.) is a widely distributed species in the Pacific Northwest of North America. The extent that the current distribution of this species may be altered under a changing climate is an important question for managers of wood supply as well as those interested in conservation of subalpine ecosystems. In this paper, we address the question, how much might the current range of the species shift under a changing climate? We first assessed the extent that suboptimal temperature, frost, drought, and humidity deficits affect photosynthesis and growth of the species across the Pacific Northwest with a process-based model (3-PG). We then entered the same set of climatic variables into a decision-tree model, which creates a suite of rules that differentially rank the variables, to provide a basis for predicting presence or absence of the species under current climatic conditions. The derived decision-tree model successfully predicted weighted presence and absence recorded on 12,660 field survey plots with an accuracy of ~70%. The analysis indicated that sites with significant spring frost, summer temperatures averaging <15°C and soils that fully recharged from snowmelt were most likely to support lodgepole pine. Based on these criteria, we projected climatic conditions through the twenty-first century as they might develop without additional efforts to reduce carbon emissions using the Canadian Climate Centre model (CGCM2). In the 30-year period centered around 2020, the area suitable for lodgepole pine in the Pacific Northwest was projected to be reduced only slightly (8%). Thereafter, however, the projected climatic conditions appear to progressively favor other species, so that by the last 30 years of twenty-first century, lodgepole pine could be nearly absent from much of its current range. We conclude that process-based models, because they are highly sensitive to seasonal variation in solar radiation, are well adapted to identify the importance of different climatic variables on photosynthesis and growth. These same variables, once indentified, and run through a decision-tree model, provide a reasonable approach to predict current and future patterns in a species?? distribution. 相似文献
8.
Recent and Future Climate Change in Northwest China 总被引:24,自引:0,他引:24
Yafeng Shi Yongping Shen Ersi Kang Dongliang Li Yongjian Ding Guowei Zhang Ruji Hu 《Climatic change》2007,80(3-4):379-393
As a consequence of global warming and an enhanced water cycle, the climate changed in northwest China, most notably in the Xinjiang area in the year 1987. Precipitation, glacial melt water and river runoff and air temperature increased continuously during the last decades, as did also the water level of inland lakes and the frequency of flood disasters. As a result, the vegetation cover is improved, number of days with sand-dust storms reduced. From the end of the 19th century to the 1970s, the climate was warm and dry, and then changed to warm and wet. The effects on northwest China can be classified into three classes by using the relation between precipitation and evaporation increase. If precipitation increases more than evaporation, runoff increases and lake water levels rise. We identify regions with: (1) notable change, (2) slight change and (3) no change. The future climate for doubled CO2 concentration is simulated in a nested approach with the regional climate model-RegCM2. The annual temperature will increase by 2.7 ^ C and annual precipitation by 25%. The cooling effect of aerosols and natural factors will reduce this increase to 2.0 ^C and 19% of precipitation. As a consequence, annual runoff may increase by more than 10%. 相似文献
9.
基于IBTrACS提供的热带气旋最佳路径数据集,在统计分析历史热带气旋的发生年频次、发生位置、路径移动及强度变化等的基础上,建立了西北太平洋热带气旋轨迹合成模型。模型包括生成模型、移动模型、消亡模型及强度模型4个部分,并从地理轨迹密度、年登陆率、登陆风速分布三个方面,对模拟的气旋路径与历史气旋路径进行比较,以验证模型的准确性和可靠性。结果表明,构建的西北太平洋热带气旋全路径统计模拟模型稳健可靠,可进一步应用于研究区热带气旋的定量精细化的风险评估,能提高气旋风险灾害评估的可信度。 相似文献
10.
利用热带气旋年鉴、海温和大气环流再分析资料,分析2007年西北太平洋(包括南海)的风暴级以上热带气旋(简称TC)活动状况及海-气条件.结果表明,相对于气候平均值,2007年西北太平洋TC活动的季节峰期推后了约2个月,源地明显偏北,生成点纬度发生了2次明显跃变,年度TC的总体活动较弱,但个体的强度较强,路径以西北行为主,登陆比例偏大.影响上述TC活动特征的一个重要原因是年内ENSO循环的位相使得上半年的大气环流不利因素居多,而下半年大尺度上升运动、热带辐合带均较强,副高偏北、局地垂直风切变较小和对流层低层较强的扰动活动等条件,也十分有利热带气旋活动. 相似文献
11.
Summary A frequency analysis of deep cyclones with central pressure less than or equal to 990 hPa over Asia and the Northwest Pacific in the period 1958–1989 is presented. The most active areas of deep cyclones are: 1) Western Siberia, east of the Ural Mountains; 2) Northeastern China, east of the Mongolia Plateau and, 3) South-west of the Kamchatka Peninsula. The first most active area is related to European cyclones (Schinke, 1993) and starts in the lee of the Ural Mountains; the second is related to cyclones in the lee of Altai-Sayan and the third to East Asian coastal cyclones. After zonal averaging, two frequency maxima of deep cyclones emerged, one between 62.5–67.5° N and the other between 47.5–52.55° N. This is different from the European and North Atlantic regions where only one maximum occurs. The seasonal frequency deep cyclones in Northeastern China reaches maximum in spring and summer while in western Siberia and the Northwest Pacific deep cyclones are more frequent in winter. The annual trend of deep cyclones over the Northwest Pacific shows an increase from the sixties to the eighties while deep cyclones over East Asia decreased during this period. In the 1980's, more deep cyclones occurred over the Northwest Pacific and less deep cyclones over main land Asia which may be associated with the northern hemisphere warming. The monthly number of oceanic deep cyclones in December and January appeared to be positively correlated with the August and September sea surface temperatures over the East Pacific (El Nino regions 1 + 2).With 7 Figures 相似文献
12.
Soon-Il An 《Theoretical and Applied Climatology》2008,91(1-4):77-84
Summary Analysis of both instrumental and proxy climate records indicates the existence of multi-decadal climate variations (about
40–70 years) over the northern hemisphere. A simple model for the midlatitude ocean-atmosphere coupled system is presented
to discuss a possible mechanism for this multi-decadal variation. Slow dynamic adjustments of the ocean due to the Rossby
wave coupled with the meridional heat exchange through the thermal advection in the upper layer of the ocean play an important
role in inducing this multi-decadal oscillation.
Authors’ address: Soon-Il An, Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University, 134 Shinchon-dong,
Seodaemu-gu, Seoul 120-749, Korea. 相似文献
13.
该文提出一种西北太平洋热带气旋年生成活动的客观预测模型。研究大尺度环境因子对西北太平洋热带气旋年生成频次的作用,使用最小角回归算法对初始14个预测因子进行选择和降维,将资料集分为训练集(1979—2015年)和验证集(2016—2020年),建立随机森林回归模型预测热带气旋年生成频次。分析环境因子对西北太平洋热带气旋生成位置的作用,使用逐步回归算法筛选影响显著的预测因子,建立局部泊松回归模型预测热带气旋生成空间位置的概率。结果表明:随机森林回归模型可以预测西北热带气旋频次的主要变化和趋势,揭示环境因子对西北太平洋热带气旋年生成频次的影响。局部泊松回归模型对于气旋生成位置概率有一定预测能力。利用随机森林回归模型和局部泊松回归模型模拟1979—2020年西北太平洋热带气旋生成,结果与观测基本一致,可见模型可为热带气旋危险性分析提供参考。 相似文献
14.
利用1979—2012年我国160站逐月降水资料、NOAA全球海洋表面温度资料和NCEP-DOE大气环流再分析资料,采用统计分析方法研究了北太平洋海表增暖对我国西北秋雨年代际变化的影响。结果表明:西北秋雨在2000年前后经历了年代际跃变,1986—1999年为少雨期,2000—2012年为多雨期。进一步分析表明:西北秋雨的年代际变化与北太平洋海表增暖关系密切,北太平洋海温偏暖时,东亚—北太平洋地区的大气温度升高,引起东亚地区的南北温差减弱,使东亚西风急流减弱,急流中心偏北,东亚中纬度地区气压升高,导致异常东风水汽输送带偏强,造成西北秋雨异常偏多。 相似文献
15.
西北太平洋热带气旋强度统计释用预报方法研究 总被引:4,自引:1,他引:4
为了提高西北太平洋地区热带气旋(TC)强度预报准确率,在气候持续预报方法基础上,考虑气候持续性因子、天气因子、卫星资料因子,以TC强度变化为预报对象,运用逐步回归统计方法,建立西北太平洋地区24、48、72小时TC强度预报方程。通过不同的分海区试验(远海区域、华东近海、华南近海),证明回归结果较好。逐一分析选入因子发现:气候持续性因子在方程中相当重要;同时对远海区域和华东近海而言,海温影响也不容忽视,对华南近海而言,反映动力强迫作用的因素也较为重要。卫星资料的加入,对回归结果略有改进。用“刀切法”作独立样本检验,与气候持续法比较,预报误差明显减小。 相似文献
16.
《大气与海洋》2012,50(4):92-102
Argo observations reveal that the salinity in the North Pacific subtropical gyre near Luzon Strait gradually declined by 0.2 (practical salinity scale used) from 2003 to 2007 over a depth range of 100 m to 200 m. Such freshening is also found in the outputs of the Estimating the Circulation and Climate of the Ocean (ECCO) model. The possible mechanisms for the freshening are investigated using the surface freshwater flux (E-P) data, the ECCO outputs and a salt budget equation for the upper ocean. Our analysis indicates that the magnitude of the salinity change caused by the surface freshwater flux anomaly is far smaller than observed, suggesting that the surface freshwater flux anomaly is not sufficient to account for the observed freshening. In fact, the salinity anomaly is closely linked to a pronounced freshening at the northeast corner of the study area from 2003 to 2007. The advection of salinity anomalies in the western North Pacific Ocean between 25°N and 35°N via a southwestward flow in the “C–shaped” region associated with the Kuroshio system is the main mechanism responsible for the observed freshening in the study area. RÉSUMÉ?[Traduit par la rédaction] Les observations Argo révèlent que la salinité dans le gyre subtropical du Pacifique Nord près du détroit de Luçon a graduellement diminué de 0,2 (en utilisant l’échelle de salinité pratique) entre 2003 et 2007 dans un intervalle de profondeur de 100 à 200 m. Un adoucissement comparable s'observe aussi dans les sorties du modèle ECCO (Estimating the Circulation and Climate of the Ocean). Nous examinons les mécanismes pouvant expliquer l'adoucissement au moyen des données de flux d'eau douce en surface (E–P), des sorties de l'ECCO et de l’équation du bilan du sel pour la couche supérieure de l'océan. Notre analyse indique que l'ampleur du changement de salinité causé par l'anomalie de flux d'eau douce en surface est beaucoup plus petite que ce qui est observé, ce qui suggère que l'anomalie de flux d'eau douce en surface ne suffit pas à expliquer l'adoucissement observé. En fait, l'anomalie de salinité est étroitement liée à un adoucissement prononcé dans le coin nord-est de la zone à l’étude de 2003 à 2007. L'advection des anomalies de salinité dans l'ouest du Pacifique Nord entre 25°N et 35°N par un écoulement vers le sud-ouest dans la région en forme de « C » associée au système du Kuroshio est le principal mécanisme responsable de l'adoucissement observé dans la zone à l’étude. 相似文献
17.
Tree-ring estimates of Pacific decadal climate variability 总被引:10,自引:0,他引:10
Decadal-scale oscillatory modes of atmosphere-ocean variability have recently been identified in instrumental studies of
the Pacific sector. The regime shift around 1976 is one example of such a fluctuation, which has been shown to have significantly
impacted climate and the environment along the coastline of the western N and S Americas. The length of meteorological data
for the Pacific and western Americas critically limits analyses of such decadal-scale climate variability. Here we present
reconstructions of the annual Pacific Decadal Oscillation (PDO) index based on western North American tree-ring records which
account for up to 53% of the instrumental variance and extend as far back as AD 1700. The PDO reconstructions indicate that
decadal-scale climatic shifts have occurred prior to the period of instrumental record. Evaluation of temperature and precipitation-sensitive
tree-ring series from the northeast Pacific as well as these reconstructions reveals evidence for a shift towards less pronounced
interdecadal variability after about the middle 1800s. Our analyses also suggest that sites from both the northeast Pacific
coast as well as the subtropical Americas need to be included in proxy data sets used to reconstruct the PDO.
Received: 15 September 2000 / Accepted: 30 March 2001 相似文献
18.
Interdecadal variability over the North Pacific in a multi-century climate simulation 总被引:4,自引:0,他引:4
Andrew W. Robertson 《Climate Dynamics》1996,12(4):227-241
Interdecadal variability in the North Pacific region is investigated in a 500-y control integration of the Hamburg ECHAM+LSG coupled ocean-atmosphere general circulation model. The spectrum is predominantly red, but a significant peak with a period of about 18 y is detected in the spectrum of sea surface temperature (SST). This peak is shown to be associated with an irregular oscillation that involves both the model ocean and atmosphere. The SST, sea-level pressure, and geopotential height at 500 hPa all undergo a primarily standing oscillation with an extensive monopole structure centered near the date line. The surface anticyclone is situated to the northeast of the warm SST anomaly, and there is a small westward tilt with height; temporal changes are approximately in phase. The anomalous surface heat flux accompanying the warm phase of SST is primarily out of the ocean, but is compensated by anomalous warm advection by surface currents, allowing the SST anomaly to persist. Oceanic thermocline anomalies propagate northward in the western Pacific, and lag the atmosphere indicating a disequilibrium with the atmosphere; sub-surface thermal advection appears to play an important role. A comparison is made between the model's 18-y oscillation and oscillatory components identified in an analysis of the GISST observational SST dataset, which have periods of approximately 6 and roughly 30 y. 相似文献
19.
J. S. Chowdary C. Gnanaseelan Soumi Chakravorty 《Theoretical and Applied Climatology》2013,113(1-2):329-336
Influence of northwest (NW) Pacific anticyclone on the Indian summer monsoon (ISM), particularly over the head Bay of Bengal and monsoon trough region, is investigated. Strong NW Pacific anticyclone during summer induces negative precipitation anomalies over the head Bay of Bengal and Gangetic Plain region. Westward extension of moisture divergence and dry moisture transport from NW Pacific associated with anticyclone (ridge) and local Hadley cell-induced subsidence are responsible for these negative precipitation anomalies. The impact is maximum when the anticyclone and Indian Ocean basin warming co-occur. This contributes significantly to year-to-year variability of ISM. 相似文献
20.
西北太平洋台风累积动能气候异常特征分析 总被引:1,自引:1,他引:1
应用美国联合台风警报中心(JTWC)提供的热带气旋数据、NCEP再分析资料和英国Hadly中心海表温度资料,分析了年台风累积动能(ACE)异常年气候特征及气候背景.结果表明:年台风累积动能有明显的年际和年代际变化;ACE异常年份由于季风槽东伸的经度、越赤道气流通道和强度以及副热带高压位置的显著差异,造成台风频数、强度和生命史的差异;当5-8月赤道中东太平洋海温为正距平、西南太平洋海温负距平时,通过异常沃克环流和局部哈得来环流的下沉支向西北太平洋输送跨赤道南风,导致该年西北太平洋ACE增多,反之该年ACE减少. 相似文献