首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Napo phosphorites were deposited at the edge of a stable marine shelf during the Upper Cretaceous (Coniacian) oceanic anoxic event (OAE 3) at the transition from bioclastic limestone to organic-rich shale facies. Phosphogenesis was triggered in the shelf margin environment by a number of factors including strong upwelling currents, high biological activity, plankton blooms, and large amounts of organic matter production and subsequent accumulation. Dissolved phosphate levels increased in the sediment from a combination of anoxic conditions and microbial activity. Once dissolved phosphate concentrations were high enough, apatite began to form around nucleic sites including mineral grains, shells, wood fragments, and foraminifera tests forming peloidal fluorine rich carbonate fluoroapatite (francolite). As the peloids formed, sedimentation continued and dissolved phosphate concentrations diminished. A period of minor winnowing ensued, and as dissolved phosphate concentrations remained low, shale layers were deposited separating the various phosphate layers.  相似文献   

2.
Modern Ca:Mg carbonate stromatolites form in association with the microbial mat in the hypersaline coastal lagoon, Lagoa Vermelha (Brazil). The stromatolites, although showing diversified fabrics characterized by thin or crude lamination and/or thrombolitic clotting, exhibit a pervasive peloidal microfabric. The peloidal texture consists of dark, micritic aggregates of very high‐Mg calcite and/or Ca dolomite formed by an iso‐oriented assemblage of sub‐micron trigonal polyhedrons and organic matter. Limpid acicular crystals of aragonite arranged in spherulites surround these aggregates. Unlike the aragonite crystals, organic matter is present consistently in the dark, micritic carbonate comprising the peloids. This organic matter is observed as sub‐micron flat and filamentous mucus‐like structures inside the interspaces of the high‐Mg calcite and Ca dolomite crystals and is interpreted as the remains of degraded extracellular polymeric substances. Moreover, many fossilized bacterial cells are associated strictly with both carbonate phases. These cells consist mainly of 0·2 to 4 μm in diameter, sub‐spherical, rod‐like and filamentous forms, isolated or in colony‐like clusters. The co‐existence of fossil extracellular polymeric substances and bacterial bodies, associated with the polyhedrons of Ca:Mg carbonate, implies that the organic matter and microbial metabolism played a fundamental role in the precipitation of the minerals that form the peloids. By contrast, the lack of extracellular polymeric substances in the aragonitic phase indicates an additional precipitation mechanism. The complex processes that induce mineral precipitation in the modern Lagoa Vermelha microbial mat appear to be recorded in the studied lithified stromatolites. Sub‐micron polyhedral crystal formation of high‐Mg calcite and/or Ca dolomite results from the coalescence of carbonate nanoglobules around degraded organic matter nuclei. Sub‐micron polyhedral crystals aggregate to form larger ovoidal crystals that constitute peloids. Subsequent precipitation of aragonitic spherulites around peloids occurs as micro‐environmental water conditions around the peloids change.  相似文献   

3.
Calcimicrobialites across the Permian-Triassic boundary in Huayingshan (华蓥山) region were investigated using the fluorescence microscopic measurements to understand the occurrence of organic matter. The microbialites are composed of micrite matrix and coarse spar cement. Abundant rhombic or magnetic needle-like carbonate minerals were observed adrift within the cement. The fluorescence microscopic measurement indicates the micrite matrix in microbialites shows the most abundant organic matter, with the rhombic or magnetic needle-like carbonate minerals and coarse spar cement coming to the 2nd and the 3rd, respectively. Organic matter is mainly preserved in the space between the grains of the micrite minerals but almost evenly distributed in the rhombic or magnetic needle-like carbonate minerals. As one of the common diagenesis types, dolomitization is observed to occur in the microbialites in Huayingshan. However, the carbonate cement in microbialites still has high content of element Sr as shown by the microprobe analysis, reflecting that the dolomitization might have happened in a restricted environment. Observation under the fluorescence microscope shows that dolomitization just led to the redistribution of organic matter in the grain space of dolomite minerals, inferring that the diagenesis has a slight effect on the preservation, and thus on the content of organic matter in the microbialites.  相似文献   

4.
Following introduction of the term ‘nummulite bank’, there has been debate regarding interpretation of these types of deposits as autochthonous (automicrite) or allochthonous (detrital micrite). These banks are made up of large foraminifera and ill‐defined fine‐grained components. The fine‐grained components consist mainly of micrites. The recognition of automicrite has deep implications for the synsedimentary cementation and stabilization of the bank. In order to distinguish between automicrite and detrital micrite, the nanomorphology, geochemistry and organic matter remains in the microfacies of a nummulite bank in the Middle Eocene of Monte Saraceno (Gargano, Southern Italy) were analysed. Optical and scanning electron microscope investigations showed that the micrites have been recrystallized to aggrading microsparite. Epifluorescence observations on selected micrite/microsparite areas with peloidal texture revealed the presence of organic matter. Scanning electron microscope analyses on epifluorescent micrites showed that the microbial peloids have smaller crystal sizes than those in organic matter‐depleted areas. The geochemical characterization of extracted organic matter, performed through the functional group analyses by Fourier transform‐infrared spectroscopy, shows strong prevalence of the aromatic fraction over the aliphatic and carboxylic ones. These characteristics of organic compounds indicate both their thermal maturation and their likely derivation from degradation of bacterial communities. The local presence of peloidal anti‐gravity textures, bright epifluorescence and organic molecules in clotted peloidal areas suggest that the metabolic activity of microbial communities could have induced precipitation of these micrites and, consequently, the syndepositional cementation of the nummulite bank. This type of cementation can rapidly stabilize sediments and promote the depositional bank geometry.  相似文献   

5.
Calcimicrobialites across the Permian-Triassic boundary in Huayingshan region were investigated using the fluorescence microscopic measurements to understand the occurrence of organic matter. The microbialites are composed of micrite matrix and coarse spar cement. Abundant rhombic or magnetic needle-like carbonate minerals were observed adrift within the cement. The fluorescence microscopic measurement indicates the micrite matrix in microbialites shows the most abundant organic matter, with the rhombic or magnetic needle-like carbonate minerals and coarse spar cement coming to the 2nd and the 3rd, respectively. Organic matter is mainly preserved in the space between the grains of the micrite minerals but almost evenly distributed in the rhombic or magnetic needle-like carbonate minerals. As one of the common diagenesis types, dolomitization is observed to occur in the microbialites in Huayingshan. However, the carbonate cement in microbialites still has high content of element Sr as shown by the microprobe analysis, reflecting that the dolomitization might have happened in a restricted environment. Observation under the fluorescence microscope shows that dolomitization just led to the redistribution of organic matter in the grain space of dolomite minerals, inferring that the diagenesis has a slight effect on the preservation, and thus on the content of organic matter in the microbialites.  相似文献   

6.
海相碳酸盐岩成岩作用与排烃特征   总被引:1,自引:1,他引:0  
与泥页岩以缓慢压实为主的成岩作用不同,碳酸盐岩的成岩以胶结和交代作用为主,并在浅埋处几乎失去其所有的原生孔隙和沉积水。碳酸盐岩在埋藏条件下处于近完全封闭的压实流环境中,深埋和地温升高除形成小规模的压溶作用(如缝合线)外,其他类型的成岩作用很微弱。在进入有机质生烃的门限深度后,低丰度有机质虽可生成一定数量的烃类,但碳酸盐岩不像泥岩那样可以脱出大量压实水,烃的运移既无"载体",又无异常高压作为动力和造缝条件,烃类很难大规模运移。在其后的成岩作用中,烃类或分散于封闭的晶间孔隙中,或与矿物结合形成晶包有机质和包裹体有机质,造成碳酸盐岩含烃率常常高于泥页岩。  相似文献   

7.
The Lower Ordovician La Silla Formation of the Precordillera of west‐central Argentina is part of the west‐facing early Palaeozoic, tropical carbonate platform succession that comprises the core of the Cuyania terrane. Up to 360 m thick, it is exposed in several thrust sheets over a distance of some 250 km along and across depositional strike over a palinspastically unrestored distance of about 35 km. La Silla Formation is a strikingly pure limestone with subordinate finely crystalline dolomite and rare chert. It accumulated on a more or less uniformly subsiding passive margin. Copious precipitation of microcrystalline calcite, probably influenced by microbial activity to varying degrees, led to the generation of peloids, ooids and aggregates of these grains, as well as small amounts of lime mud, intraclasts, stromatolites and thrombolites. Rare bioclasts are limited mostly to scattered gastropods and trilobite sclerites; bioturbation is present locally. The array of carbonate rock types is grouped into eight recurring lithofacies, in order of decreasing abundance: (i) peloidal grainstone; (ii) laminated dolostone; (iii) intraclastic rudstone; (iv) microbial laminite; (v) peloidal packstone; (vi) ooidal grainstone; (vii) thrombolite boundstone; and (viii) mudstone. These facies represent sediments that formed solely in a shallow subtidal marine environment, with no evidence of restricted conditions, hypersalinity or subaerial exposure. No events of eustatic sea‐level change are recorded. By far the dominant facies is grainstone composed of well‐sorted, fine sand‐sized peloids and peloidal aggregates in homogeneous, tabular to gently undulating, medium to thick beds; cross‐lamination is scarce. Clusters of sub‐metre‐sized microbial patch reefs developed sporadically. The shallow platform is envisaged to have been covered by extensive peloidal sand flats and low‐relief banks, and little lime mud was generated. The setting was probably microtidal and may not have been affected by strong trade winds. It was washed by frequent, relatively gentle wave action but without experiencing powerful storms. In the middle member, anomalous lenses of intraclastic rudstone and laminated dolostone occur as graded beds overlying sharply downcut scoured surfaces up to 20 cm deep; these are interpreted to indicate a phase when accretion was punctuated occasionally by tsunamis generated from rift‐faulting seaward of the platform margin. The remarkably uniform peloidal grainstone composition over a broad area shows that, given the appropriate combination of climate, environmental and ecological factors, large portions of some early Palaeozoic platforms were dominated by grainy sediment and remained under well‐agitated conditions within fair‐weather wave‐base, without distinct lateral facies differentiation or tidal‐flat aggradation.  相似文献   

8.
Microbial decomposition experiments were used to characterize changes in the amino acid and amino sugar yields and compositions of natural marine substrates during early diagenesis in seawater. On average, 63% of added carbon and 68% of added nitrogen were removed within the first 30 days of decomposition. In all cases, amino acid utilization accounted for a substantial fraction of the removed C and N. Carbon-normalized amino acid yields decreased to less than 50% of their starting values and most of this change occurred within the first 10 days of decomposition. Increases in the concentrations of amino sugars and decreases in the GlcN:GalN ratio in particulate organic matter (POM) illustrated the significance of microbial production during the decomposition of added substrates. Changes in the mol % composition of amino acids during early diagenesis were substantial but highly variable with substrate. Previous survey data collected from the same region were used in conjunction with the experimental data to investigate the utility of several established amino acid-based indices of organic matter diagenesis. This comparison showed that a combination of these degradation indexes is most effective for describing the diagenetic state of dissolved organic matter (DOM). Carbon-normalized amino acid yields were found to be the most effective indicator for early diagenesis. Relative abundances of amino acids were effective indicators of intermediate stages of diagenesis and the mol % composition of the non-protein amino acid γ-Aba (γ-aminobutyric acid) was an effective indicator of advanced DOM diagenesis.  相似文献   

9.
The diagenesis in the organic-rich Cretaceous to Eocene Al Hisa Phosphorite Formation (AHP), Muwaqqar Chalk Marl Formation (MCM) and Umm Rijam Chert-Limestone Formation (URC) formations of Jordan can be linked directly to the fluctuating sedimentary environment of this shelf depositional system in the Middle to Late Eocene, and its influence on the composition of the deposited sediment and the early burial diagenetic environment. Most cementation was early, mostly within the first 10 m of burial, perhaps entirely within the first 100 m of burial. We propose that the siliceous cements are derived from biogenic silica, probably of diatoms, deposited in a shelf of enhanced productivity. Volumetrically, the most important processes were the redistribution of biogenic opal-A (diatoms) and calcite to form pervasive, layered and nodular cements. The formation of the silica and carbonate cements is closely linked through the effects their dissolution and precipitation have on pore fluid chemistry and pH. The chert beds have a biogenic silica origin, formed through replacement of diatoms and radiolaria by opal-CT, and subsequently by quartz. Calcite cement has carbonate derived from microbial diagenesis of organic matter and calcium derived from seawater. The Mg for early dolomite may have been generated by replacement of opal-CT by quartz, ore dissolution of unstable high Mg calcite bioclasts. The silica and carbonate diagenetic processes are both linked to microbial diagenesis of organic matter, and are intimately linked in both time and space, with pH possibly influencing whether a silica or a carbonate mineral precipitates. The paucity of metal cations capable of precipitating as sulphides is crucial to the creation of acidic pore water favourable to silica precipitation, either as opal-CT, chalcedony or quartz. The lack of clay minerals as a sink for the Mg required for opal-CT polymerisation is the principal factor responsible for the remarkably early silica cementation. All the diagenetic processes, with the probable exception of the opal-CT to quartz transition are early, almost certainly within the first 10 m of burial, possibly much less. A paragenetic sequence is presented here based on these two cores that should be tested against a wider core distribution to see whether this diagenetic history can be generalised throughout the basin. Warm bottom water temperatures probably led to silica diagenesis at much shallower burial depths than occurs in many other sedimentary basins. Silicified layers, in turn, commonly host fractures, suggesting that mechanical properties of the strata began to differentiate at a very early stage in the burial cycle. This has wide implications for processes linking diagenesis to deformation.  相似文献   

10.
四川盆地五峰组—龙马溪组富有机质页岩成岩过程较为复杂,成岩作用类型多样,对页岩孔隙尤其是有机孔隙的发育和保存具有重要控制作用.在早—中成岩期,泥质页岩主要遭受机械压实、黄铁矿与碳酸盐胶结、蒙脱石伊利石化等作用的破坏改造,导致大量原生无机孔隙丧失,而硅质页岩主要经历机械压实和生物蛋白石重结晶作用,由于生物蛋白石重结晶作用...  相似文献   

11.
海相碳酸盐岩优质烃源岩发育的主要影响因素   总被引:30,自引:4,他引:26  
我国近3×106km2的海相碳酸盐岩分布区长期被认为是潜在的油气勘探区,近年来虽然我国在海相碳酸盐岩地层的油气勘探有了一些突破,但与广泛分布的海相碳酸盐岩区相比,取得的成果还不令人满意。其关键问题是海相碳酸盐岩沉积盆地优质烃源岩发育相带不明,控制优质烃源岩发育的主要因素不清。本文根据海洋生物、现代海洋沉积和古代海相地层中有机质含量分布特征和实验室模拟实验结果,提出影响海相沉积有机质富集的主要因素有:沉积物形成时水体中生物生产率、沉积速率、沉积阶段及早期成岩作用阶段的氧化还原环境、海底深部流体作用等。其中,水体中高生物生产率是海相环境形成富有机质沉积的关键因素,沉积阶段和早期成岩作用阶段水体的相对还原环境有利于有机质富集保存,海底深部流体的活动是形成富集有机质沉积的不可忽视的因素。沉积速率是影响海相沉积有机质富集的主要因素,适当的沉积速率是海相沉积富集的有利条件。  相似文献   

12.
Organic molecules originating only from the in situ diagenesis of biogenic molecules are ideal geochemical fossils which may provide information essential for the characterization and reconstruction of depositional environments and subsequent chemical reactions during diagenesis. It is proposed herein that this is the case for the 5β-isomers of stanols and stanones produced during stenol hydrogenation in young aquatic sediments, if shown to be essentially free of any major anthropogenic pollution (particularly, sewage). In order to clarify the environmental factors controlling the production of the 5β-steroidal isomers from stenols in recent aquatic sediments, attempts were made to relate the occurrence of 5β-stanols to various environmental parameters. Positive correlations between elevated concentrations of 5β-stanols and the degree of autochthonous contribution to sedimentary organic matter were consistently found in various surface aquatic sediments from a wide variety of depositional environments and also in older sediments extending even to the late Pleistocene. According to this finding, it was concluded that the primary factor controlling the conversion of stenols to 5β-stanols through 5β-stanones in anaerobic aquatic sediments is probably the relative contribution of autochthonous organic matter suitable for microbial metabolism (i.e. metabolizable organic matter) to the sediments. Consequently, it is proposed that the 5β-isomers of stanols and stanones, at least in immature aquatic (marine and non-marine) sediments, can serve as primary markers for defining the quality of sedimentary organic matter (viz. the relative contribution of metabolizable organic materials to sedimentary organic matter) and as indicators for the types and rates of microbiological activities responsible for early diagenesis of organic matter in anaerobic sediments. It is also suggested that the combination of the 5β-steroidal isomers with organic source parameters will allow these compounds to assist in indicating oxic or anoxic depositional environments.  相似文献   

13.
Dolomites in thick sections of Miocene Monterey Shale and related formations in the Temblor Range of California acquired their isotopic compositions as they formed at shallow depth in the original sediment rich in organic matter, and retained the composition against the vicissitudes of burial diagenesis. The oxygen isotopes of dolomites of successive beds record changes in temperature of bottom water while the carbon isotopes of the same samples indicate changes in the kind of microbial activity (sulfate reduction vs carbohydrate fermentation) that prevailed at shallow depths in the sediment. In an auxiliary study, two samples of dolomite from sediments of Cariaco Basin off Venezuela (DSDP site 147) were found to have δ5C13 of ?14.1 and ?9.8 per ml PDB, although they occur in a heavy-carbon zone containing bicarbonate as heavy as +8.4 per ml. These dolomites probably originated at shallow depth in the light-carbon zone of microbial sulfate reducers and were buried under later sediments down into the heavy-carbon zone of microbial fermenters of carbohydrates without losing their original light-carbon composition.  相似文献   

14.
中韩第五次《东北亚地壳演化》学术研讨会在北京举行   总被引:2,自引:0,他引:2  
新疆天山东部广泛发育晚石炭世碳酸盐岩隆。这些岩隆主要为生物丘,少数为生物滩及与岩隆有关的生物层,其中生物丘含大量灰泥和内碎屑。基本岩石类型为泥粒状灰岩、粒泥状灰岩、粒泥状-泥粒状灰岩,少量岩石类型包括颗粒岩、骨架岩和障积岩。成岩作用是碳酸盐岩隆发展演化的重要阶段和过程,在生物丘内,已经识别出四种重要的胶结物,即球粒泥晶、纤状方解石、放射轴状方解石和粒状方解石。尽管缺失典型的造礁生物,但通过岩石类型研究和微相分析,认为碳酸盐岩隆的形成主要取决于生物作用及古环境格局。本区碳酸盐岩隆可以同欧洲瓦尔索坦的岩隆对比  相似文献   

15.
The behavior of stable carbon and oxygen isotopes in carbonates during the deposition and diagenesis of sediments in the bioproductive Upper Famennian Pripyat Trough (southern Belarus) is discussed. Limestones and clayey limestones (Corg 0.92 ± 0.11%) are characterized by very low δ13C values (–9.6 ± 0.3‰). Parental sediments of these rocks were deposited in the shallow-water zone during slow downwarping episodes of the seafloor. Lithification of the sediments took place in oxidative conditions of the diagenesis zone. Organic matter was actively oxidized by free oxygen. Carbon dioxide with isotopically light organic carbon formed in this process was used during the crystallization of diagenetic carbonates that are visually indiscernible from the sedimentational variety. Marls, clayey marls, and carbonate-bearing clays (Corg 6.02 ± 0.80%) are characterized by δ13C values as high as –3.5 ± 0.6‰. In combustible shales (Corg >10%), δ13C value is ‒1.2 ± 0.6‰). The clayey rocks mark the episodes of sedimentation in relatively deep-water conditions that appear during the uncompensated sagging of the basin floor. The diagenetic zone with free oxygen was significantly decreased or absent at all. Here, oxygen of marine sulfates was the main or single oxidizer of organic matter (sulfate reduction). The sulfate oxygen is a weaker oxidizing agent than free oxygen. Therefore, much more organic matter was retained and fossilized in clayey rocks than in carbonate rocks. Organic carbon released during the sulfate reduction and mobilized later for the diagenetic carbonate formation was insufficient for the significant decrease of δ13C values relative to the marine carbonate standard. Isotopic composition of carbonate oxygen in the studied rocks is invariable and does not depend on the content of clay and organic matter. In these rocks, δ18O values are at the level (approximately –5‰) shown for the Famennian in the Global Chemostratigraphic Chart. This fact is consistent with the supposition that oxygen isotope composition of atmospheric precipitates, which influenced the rock formation via continental flow, is close to that of sea water in low latitudes where the territory of Belarus was located in the Late Devonian.  相似文献   

16.
The carbon and nitrogen isotope composition of organic matter has been widely used to trace biogeochemical processes in marine and lacustrine environments. In order to reconstruct past environmental changes from sedimentary organic matter, it is crucial to consider potential alteration of the primary isotopic signal by bacterial degradation in the water column and during early diagenesis in the sediments.In a series of oxic and anoxic incubation experiments, we examined the fate of organic matter and the alteration of its carbon and nitrogen isotopic composition during microbial degradation. The decomposition rates determined with a double-exponential decay model show that the more reactive fraction of organic matter degrades at similar rates under oxic and anoxic conditions. However, under oxic conditions the proportion of organic matter resistent to degradation is much lower than under anoxic conditions. Within three months of incubation the δ13C of bulk organic matter decreased by 1.6‰ with respect to the initial value. The depletion can be attributed to the selective preservation of 13C-depleted organic compounds. During anoxic decay, the δ15N values continuously decreased to about 3‰ below the initial value. The decrease probably results from bacterial growth adding 15N-depleted biomass to the residual material. In the oxic experiment, δ15N values increased by more then 3‰ before decreasing to a value indistinguishable from the initial isotopic composition. The dissimilarity between oxic and anoxic conditions may be attributed to differences in the type, timing and degree of microbial activity and preferential degradation. In agreement with the anoxic incubation experiments, sediments from eutrophic Lake Lugano are, on average, depleted in 13C (−1.5‰) and 15N (−1.2‰) with respect to sinking particulate organic matter collected during a long-term sediment trap study.  相似文献   

17.
Rock‐magnetic measurements of two sediment cores from the Madeira Abyssal Plain (MAP), north Atlantic, are used to investigate post‐depositional changes in the concentration, grain size and composition of magnetic minerals in the sediments that have occurred within organic‐rich turbidite horizons. The changes are associated with an initial stage of suboxic (reductive) diagenesis, following depletion of porewater O2, and a later stage of oxidative diagenesis associated with the slow descent of an oxidation front through the sediment, as a result of diffusion of O2 from the overlying sea water. The turbidites are of late Quaternary age (δ18O stages 1–3) and derive both from different sites on the NW African continental margin, and from the flanks of the Canary Islands. Thus, the turbidites are variable compositionally, especially in terms of carbonate, detrital magnetic mineral and organic carbon content. Diagenetic changes in these sediments have been identified using solid‐phase geochemical data (U, Mn, Corg and CaCO3) reported previously in more than one study. Rock‐magnetic parameters of the sediments, when expressed on a carbonate‐free basis, reveal that significant depletion of detrital ferrimagnetic iron (Fe2+/Fe3+) oxide grains has occurred within organic‐rich turbidites during redoxomorphic diagenesis. Normalized quotients of magnetic parameters also show that reductive diagenesis is a ferrimagnetic grain size‐selective process, but it has a minimal effect on the canted‐antiferromagnetic Fe3+ oxides in the sediment. Such components, if present, therefore become relatively enriched in magnetic assemblages as the ferrimagnetic grains are dissolved progressively, and bulk magnetic concentration is thus depleted. There is clear evidence in both cores for the existence of ultrafine ferrimagnetic grains at depth within the suboxic zone of the organic‐rich turbidites, beneath both active and fossil oxidation fronts. These grains are most probably associated with populations of live magnetotactic bacteria, which commonly inhabit such organic‐rich horizons and play a part in the chain of bacterially mediated reactions normally associated with suboxic diagenesis. These results show that simple and rapid rock‐magnetic techniques can be used to characterize early diagenetic processes involving iron phases in deep‐sea sediments, at least as effectively as more laborious, time‐consuming and sample‐destructive geochemical measurements.  相似文献   

18.
Lower Messinian stromatolites of the Calcare di Base Formation at Sutera in Sicily record periods of low sea‐level, strong evaporation and elevated salinity, thought to be associated with the onset of the Messinian Salinity Crisis. Overlying aragonitic limestones were precipitated in normal to slightly evaporative conditions, occasionally influenced by an influx of meteoric water. Evidence of bacterial involvement in carbonate formation is recorded in three dolomite‐rich stromatolite beds in the lower portion of the section that contain low domes with irregular crinkly millimetre‐scale lamination and small fenestrae. The dominant microfabrics are: (i) peloidal and clotted dolomicrite with calcite‐filled fenestrae; (ii) dolomicrite with bacterium‐like filaments and pores partially filled by calcite or black amorphous matter; and (iii) micrite in which fenestrae alternate with dark thin wispy micrite. The filaments resemble Beggiatoa‐like sulphur bacteria. Under scanning electron microscopy, the filaments consist of spherical aggregates of dolomite, interpreted to result from calcification of bacterial microcolonies. The dolomite crystals are commonly arranged as rounded grains that appear to be incorporated or absorbed into developing crystal faces. Biofilm‐like remains occur in voids between the filaments. The dolomite consistently shows negative δ13C values (down to ?11·3‰) and very positive δ18O (mean value 7·9‰) that suggest formation as primary precipitate with a substantial contribution of organic CO2. Very negative δ13C values (down to ?31·6‰) of early diagenetic calcite associated with the dolomite suggest contribution of CO2 originating by anaerobic methane oxidation. The shale‐normalized rare earth element patterns of Sutera stromatolites show features similar to those in present‐day microbial mats with enrichment in light rare earth elements, and M‐type tetrad effects (enrichment around Pr coupled to a decline around Nd and a peak around Sm and Eu). Taken together, the petrography and geochemistry of the Sutera stromatolites provide diverse and compelling evidence for microbial influence on carbonate precipitation.  相似文献   

19.
Studies of the δ13C of pore water dissolved inorganic carbon (δ13C-DIC) were carried out in shallow water carbonate sediments of the Great Bahamas Bank (GBB) to further examine sediment-seagrass relationships and to more quantitatively describe the couplings between organic matter remineralization and sediment carbonate diagenesis. At all sites studied δ13C-DIC provided evidence for the dissolution of sediment carbonate mediated by metabolic CO2 (i.e., CO2 produced during sediment organic matter remineralization); these observations are also consistent with pore water profiles of alkalinity, total DIC and Ca2+ at these sites. In bare oolitic sands, isotope mass balance further indicates that the sediment organic matter undergoing remineralization is a mixture of water column detritus and seagrass material; in sediments with intermediate seagrass densities, seagrass derived material appears to be the predominant source of organic matter undergoing remineralization. However, in sediments with high seagrass densities, the pore water δ13C-DIC data cannot be simply explained by dissolution of sediment carbonate mediated by metabolic CO2, regardless of the organic matter type. Rather, these results suggest that dissolution of metastable carbonate phases occurs in conjunction with reprecipitation of more stable carbonate phases. Simple closed system calculations support this suggestion, and are broadly consistent with results from more eutrophic Florida Bay sediments, where evidence of this type of carbonate dissolution/reprecipitation has also been observed. In conjunction with our previous work in the Bahamas, these observations provide further evidence for the important role that seagrasses play in mediating early diagenetic processes in tropical shallow water carbonate sediments. At the same time, when these results are compared with results from other terrigenous coastal sediments, as well as supralysoclinal carbonate-rich deep-sea sediments, they suggest that carbonate dissolution/reprecipitation may be more important than previously thought, in general, in the early diagenesis of marine sediments.  相似文献   

20.
Earlier interpretations of textural alteration affecting Great Salt Lake ooids have greatly influenced concepts of ooid diagenesis. Scanning electron microscope study shows, however, that the coarse radial aragonite rays are depositional, that no recrystallization of pellet cores has occurred, and that Great Salt Lake ooids have not suffered noticeable diagenesis. As suggested by Kahle (1974), radial texture in ancient calcitic ooids is probably mainly original, not diagenetic. Retention of such fine textures has been attributed to organic matter (since found to be equivalent in modern skeletal and non-skeletal grains) or to paramorphic replacement (proposed for non-skeletal grains whose original aragonite mineralogy was only inferred from modern analogs). Pleistocene ooids known to have been aragonite alter like aragonite shells to coarse neomorphic calcite, often with aragonite relics. The striking uniformity of that coarse texture in neomorphic calcite replacing known skeletal aragonites throughout the geologic record has been noted for over 100 years. In contrast, Mississippian ooids retain fine texture as do calcite layers of coexisting gastropods, but unlike the strongly altered aragonite layers of these same gastropods. Therefore, inferences of original aragonitic mineralogy of ancient non-skeletal carbonate grains (including muds) which are now calcite but retain fine texture appear unwarranted, as do assumptions of differential diagenetic behaviour of ancient aragonitic skeletal and non-skeletal grains. Accordingly, modern depositional environments of marine ooids and carbonate muds must be rejected as chemically unrepresentative of comparable ancient environments. It is inferred that ancient non-skeletal carbonates were originally predominantly or exclusively calcite because of an earlier lower oceanic Mg/Ca ratio (<2/1) which altered progressively to values favouring aragonite (modern Mg/Ca value = 5/1). Major influencing factors are: selective removal of calcium by planktonic foraminifers and coccolithophorids since Jurassic-Cretaceous time and by abundant younger, Mg-poor aragonite skeletons and an erratic trend toward decreasing dolomite formation (decreasing removal of oceanic Mg). The change to aragonite dominance over calcite for non-skeletal carbonates was probably during early to middle Cenozoic time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号