首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Zusammenfassung In vielen Fällen beeinflussen äußere Faktoren das Vorkommen der Ammoniten. Im Oberjura spielt die Wassertiefe eine große Rolle, daneben tritt die Wassertemperatur. Voraussetzungen der ökologischen Analyse sind bodenbezogenes Leben der Tiere und postmortale Autochthonie der Schalen. Methoden und Fehlerquellen werden besprochen. Aus der ökologischen Bindung vieler Ammoniten ergeben sich Folgen, vor allem für Stratigraphie, Phylogenie und Ontogenie.
In many cases external factors determine the occurence of the ammonites. In the Upper Jurassic the depth of the sea is of great importance, as well as the temperature of the water. Ecological analysis requires life of the animals close to the sea floor, and that the shells are autochthonous.Methods and sources of errors are discussed. The dependence on environment of many ammonites has consequences, especially for stratigraphy, phylogeny and ontogeny.

Résumé Souvent des facteurs extérieurs déterminent la présence des ammonites. Dans le Jurassique Supérieur la profondeur de la mer joue un grand rôle, aussi bien que la température de l'eau. L'analyse écologique doit supposer que les animaux vivent près du fond de la mer et que les coquilles sont autochtones. Les méthodes et les sources d'erreurs sont discutées. La dépendance des ammonites de leur milieu a des conséquences avant tout pour la stratigraphie, la phylogénie et l'ontogénie.

, . , . .
  相似文献   

2.
Zusammenfassung Es wird kurz auf die Ergebnisse der Untersuchungen über Horizontalverschiebungen im Bereich des alpidischen Gebirgsgürtels und der kontinentalen Kruste hingewiesen (Abb. 1, 2, 3). Großräumige tektonische Zusammenhänge sind nachweisbar, ein einheitliches planetares Lineamentsystem ist jedoch im känozoischen Verformungsbild nicht zu erkennen.Die Ansicht, daß die ozeanischen Rücken über einer im Erdmantel vertikal aufsteigenden Strömung liegen (Abb. 5 a) wird abgelehnt. Es wird die Hypothese aufgestellt, daß die ozeanischen Rücken dort liegen, wo unter der Lithosphäre im Erdmantel eine größte horizontale Fließgeschwindigkeit vorhanden ist (Abb. 5 b). Sowohl die charakteristische Zerschneidung der ozeanischen Rücken in relativ schmale Segmente wie auch die Knickung der linearen magnetischen Anomalien kann durch die Annahme einer weiträumigen horizontalen Strömung unter den ozeanischen Rücken erklärt werden (Abb. 8). In bezug auf die Strömungsrichtung in der Asthenosphäre werden Quer-Rücken, Parallel-Rücken und schief verlaufende Rücken unterschieden. Entlang den Horizontalverschiebungen, welche die Segmente der ozeanischen Rücken voneinander abtrennen, können sich 2 Rewegungsvorgänge abspielen und sich gleichzeitig überlagern: (a) Die relative horizontale seitliche Verschiebung bedingt durch den Ausdehnungsvorgang im zentralen Bereich des ozeanischen Rückens (sog. transform faulting) und (b) die relative horizontale seitliche Verschiebung, welche bedingt ist durch eine Zerscherung des Rückens als Ganzes (sog. wrench faulting) und die der erstgenannten Art der Verschiebung (a) in ihrem Sinn genau entgegengesetzt ist.Sowohl die Anordnung der Horizontalverschiebungen im alpidischen Gebirgsgürtel wie auch Verlauf und Struktur der ozeanischen Rücken weisen auf das Vorhandensein zweier Zentren oder Quellgebiete, eines im zentralen Pazifik (Pazifisches Zentrum), das andere 180 Längengrade davon entfernt im äquatorialen Afrika (Afrikanisches Zentrum) hin, die offenbar im geotektonischen Geschehen eine bedeutsame Rolle spielen.
Results of investigation of Cenozoic strike-slip faults are summarized. In the range of the Alpide fold belt the nature of strike-slip faulting is wrench faulting (Figs. 1, 2, 3). Wrench faulting is also indicated in the crust of the NE-Pacific (Fig. 4).Special attention is given to the nature of faulting on the mid-oceanic ridges. The characteristic segmentation and apparent horizontal displacement of the oceanic ridges as well as the remarkable sharp bending of the magnetic lineation can hardly be explained by a convective upcurrent below the ridges. Sea-floor spreading is explained by assuming horizontal flow below the ridges (Fig. 5 b). As compared with the flow direction in the asthenosphere we may distinguish Transverse-ridges, Parallel-ridges and Oblique-ridges (Figs. 6, 7, 8). Along the great faults which cross the ridges, sea-floor spreading as well as a displacement of the ridge segments relative to each other may be going on simultaneously; both processes, transform faulting as well as wrench faulting, caused by the same flow pattern in the asthenosphere, overlap.Two geotectonic centers are indicated, one at 10° E, 0° N in Africa, the other at 170° W, 0° N in the central Pacific. We have to assume that underneath the lithosphère mantle material is flowing away from these centers. The horizontal component of flow velocity is gradually increasing and reaches a maximum of 50–60 degrees away from the centers (Fig. 10).

Résumé L'analyse tectonique des systèmes de failles de décrochement actives pendant le Cénozoique fournit des indications sur la direction de la composante horizontale de la pression maximale dans la lithosphère continentale. On constate que cette direction s'accorde avec celle déduite des investigations séismologiques (Figs. 1, 2, 3).Un intérêt particulier est porté au mécanisme des grandes failles transversales qui coupent les dorsales médio-océaniques. L'hypothèse proposée est que, contrairement à la conception actuelle (Fig. 5 a), les dorsales médioocéaniques se situent là où, sous la lithosphère, dans l'asthénosphère, la composante horizontale de la vitesse de mouvement de matériel du manteau est la plus grande (Fig. 5 b). Cette hypothèse explique les structures caractéristiques des dorsales océaniques, aussi bien le cisaillement intensif des dorsales par les failles transversales que le changement brusque de direction des anomalies magnétiques (Figs. 6, 7, 8). D'après la direction de la composante horizontale du courant dans l'asthénosphère on peut distinguer: (a) les dorsales transversales, (b) les dorsales longitudinales et (c) les dorsales obliques. Dans le domaine des grandes failles coupant les dorsales océaniques deux types de mouvements horizontaux de sens opposés peuvent se superposer: (a) un movement dû à l'expansion de l'écorce dans la zone axiale de la dorsale (transform faulting) et (b) un mouvement de déplacement relatif des segments de la dorsale (wrench faulting).Deux centres géotectoniques sont indiqués, l'un à 10° E/0° N en Afrique centrale, l'autre à 170° W/0° N dans le Pacifique central. Il faut supposer qu'on a sous la lithosphère un mouvement du manteau de ces centres vers l'extérieur, dont la composante horizontale de la vitesse atteint un maximum à 50–60 degrés de distance de ces centres (Fig. 10).

. , , , . , . , . . . . , , ; , — .
  相似文献   

3.
The Chibougamau area, Québec, is characteristic of the internal zone of the Archean Abitibi Orogenic Belt. The paleogeographic, paleotectonic and magmatic history of the Archean sequence in the Chibougamau area is subdivided into three stages.In the first stage a submarine volcanic chain formed mainly by the effusion of submarine lava flows composed of primitive, potash-poor, tholeiitic basalt. The volcanic chain gradually grew to sea level. In the second stage, volcanic islands emerged and grew. Mainly pyroclastic eruptions of strongly differentiated, calc-alkaline andesite and dacite concentrated on the volcanic islands, whereas effusion of basalt continued at first in the surrounding basin. A felsic volcaniclastic apron was deposited around the volcanic islands. In the third stage, the volcanic islands were uplifted and were eroded to the level of their subvolcanic plutons. The debris derived from this volcanic-plutonic terrain was deposited in downfaulted marine and continental basins. The contemporaneous volcanism was shoshonitic.The first paleogeographic stage is interpreted as the growth of an immature island arc. During the second stage, the island arc became mature and its crust was thickened by accretion of plutonic material. The third stage is a period of back-arc extension.
Zusammenfassung Das Gebiet von Chibougamau, Québec, ist characteristisch für die interne Zone des Archaischen Abitibi Orogens. Man kann seine paleogeographische, paleotectonische und magmatische Geschichte in drei Phasen gliedern.Eine submarine Vulkankette formte sich in der ersten Phase, hauptsächlich durch Effusion von submarinen Lavaergüssen aus primitivem, kaliarmen, tholeiitischem Basalt. Die Vulkankette wuchs langsam bis zum Meeresspiegel. Vulkanische Inseln bildeten sich und wuchsen während der zweiten paleogeographischen Phase. Vorwiegend pyroklastische Eruptionen von stark differenzierten, kalk-alkalischem Andesit und Dazit konzentrierten sich mehr und mehr auf den Inselvulkanen, während die Effusion von Basalt zunächst in den Becken noch stattfand. Ein Mantel aus felsitischen vulkanoklastischen Gesteinen wurde um die Inselvulkane abgelagert. Die dritte Phase begann mit einer Hebung der Inselvulkane und mit ihrer Erosion bis zum Niveau ihrer subvulkanischen Plutone. Der Detritus dieses vulkanisch-plutonischen Geländes wurde in marinen und kontinentalen Verwerfungsbecken abgelagert. Der gleichalte Vulkanismus ist shoshonitisch.Wir deuten die erste paleogeographische Phase als Wachstumsphase eines primitven Inselbogens. Während der zweiten Phase reifte der Inselbogen und seine Kruste verdickte sich durch Akkretion plutonischen Materials. Die dritte Phase ist eine Periode der Dehnung im Hinterland eines Inselbogens.

Résumé La région de Chibougamau, Québec, est caractéristique de la zone interne de la ceinture orogénique archéenne de l'Abitibi. Son évolution paléogéographique, paléotectonique et magmatique se subdivise en trois phases.Lors de la première phase paléogéographique, une chaîne sous-marine de volcans se formait, essentiellement par l'émission de coulées de lave composée de basalte primitif, hypopotassique, tholéiitique. Graduellement cette chaîne volcanique s'élevait jusqu'au niveau de la mer. A la phase suivante, des îles volcaniques émergeaient et croissaient. Des éruptions essentiellement pyroclastiques d'andésites et de dacites calco-alcalines et fortement différenciées se concentraient sur les îles tandis que l'effusion de laves basaltiques continuaient dans le bassin. Un manteau de roches volcaniclastiques felsiques se déposait autour des îles volcaniques. Lors de la troisième phase, les îles volcaniques furent soulevées et furent érodées jusqu'au niveau des masses plutoniques sub-volcaniques. Le débris de ce terrain volcano-plutonique fut déposé dans des bassins de faille marins et continentaux. Des shoshonites dominaient le volcanisme contemporain.Nous interprétons la première phase paléogéographique comme une phase de croissance d'un arc insulaire immature. Lors de la deuxième phase, 1'arc insulaire devenait mature et sa croûte s'epaissît par accrétion de matériel plutoni-que. Enfin, la troisième phase est une période d'extension en arrière d'un arc insulaire.

Chibougamau, Quebec, Abitibi. , . , . . , , . . , . - , , . . . . , , . , — . — . .
  相似文献   

4.
Résumé Après mise au point d'une technique permettant la comparaison des rapports isotopiques de potassium extrait de roches variées, à mieux que 0,2% près, on a recherché les variations possibles de l'abondance des isotopes 39 et 41. Certains résultats obtenus sur des roches volcaniques semblent indiquer des variations réelles. Une hypothèse est proposée pour l'interprétation de ces résultats, basée sur des phénomènes de différenciation crustale.
The relative abundance of 41 and 39 isotopes of potassium has been determined in various rocks. A brief account of experimental technique is given; the reproducibility of measurement is about 0.2%. Most samples do not show significant variations, except some volcanic rocks. A tentative interpretation of these results, based upon crustal differentiation, is given.

Zusammenfassung Dieser Bericht gibt die Ergebnisse der Isotopenanalysen des Kaliums, die an etwa vierzig verschiedenen Felsen-Probenstücken ausgeführt wurden. Die experimentelle Technik wird hier kurz beschrieben. Die meisten Felsarten, bis auf einige vulkanische Felsen, zeigen keine bedeutenden Veränderungen. Es wird eine Interpretation der Ergebnisse vorgeschlagen, die auf der Theorie der chemischen Differenzierung der Erdkruste beruht.

. , .
  相似文献   

5.
The limit between the West Asturian-Leonese and Central-Iberian Zones in the NW of the Iberian Peninsula is described in the area of Caurel-Truchas (Provinces of Orense and León). From the distribution of the sedimentary formations and the Variscan structures it is inferred that the transition between the two zones was a fault system, which was active during, at least, the Ordovician and Lower Silurian. The faults were supposedly normal, though they had probably some strike-slip component, and gave rise to a half-graben in which a syn-rift sequence was deposited. The latter underwent inversion at the onset of the Variscan tectonism, producing a ramp anticline-syncline pair that forms the more important folds in the area. The varying geometry of these folds is interpreted partly as being due to the existence of previous en échelon folds related to the strike-slip component of the faults and, partly, as a result of the variable intensity of the shear strain undergone during the first variscan phase.
Zusammenfassung Die Grenze zwischen der West-Asturischen-Leonesischen und Zentral-Iberischen Zone im NW der Iberischen Halbinsel wird aus dem Gebiet von Caurel-Truchas (Provinz Orense und León) beschrieben. Aufgrund der Verteilung der sedimentären Formationen, sowie der variszischen Strukturen wird abgeleitet, daß der Übergang zwischen den beiden Zonen durch ein Störungssystem bedingt wurde, das zumindest zwischen Ordovizium und Untersilur aktiv war. Dabei handelte es sich vermutlich um Abschiebungen mit einer Horizontalverschiebungskomponente. Diese Ausbildung führte zu einem Halbgraben mit darin abgelagerter sedimentärer Syn-Riftsequenz. Letztere wurde während der Anfangsphase der variszischen Tektonik invertiert, so daß es zu einem Rampen-Antiklinal-Synklinal Paar kam, welches die wichtigsten Falten der Gegend bildet. Die variable Geometrie der Falten wird zum einen der Existenz von frühen En-échelon Falten zugeschrieben, die durch die Horizontalverschiebungskomponente der Störungen hervorgerufen wurden; zum anderen sind sie das Resultat der veränderlichen Intensität der Scherspannung während der ersten variszischen Phase.

Resumen Se describe el límite entre las Zonas Asturoccidental-Leonesa y Centroibérica en el NO de la Península Ibérica en el área del Caurel-Truchas (Provincias de Orense y León). Partiendo de la distribución de las formaciones sedimentarias y de la geometría de las estructuras varíscicas, se deduce que la transición entre las dos zonas fue un sistema de fallas, que fue activo al menos durante el Ordovício y el Silúrico Inferior. Se supone que la principal componente de las fallas fue normal, aunque debió de existir también una componente de desgarre, y su juego originó un semi-graben en el que se acumuló una secuencia sin-rift. Esta última experimentó una inversión al principio de la tectogénesis Varíscica, formándose un par de pliegues de rampa que son los pliegues más importantes del área. La geometría variable de esos pliegues se interpreta como debida, en parte, a la existencia previa de pliegues en escalón relacionados con la componente de desgarre de las fallas y, en parte, como consecuencia de la variable intensidad de la deformación por cizallamiento sufrida durante la primera fase de deformación varíscica.

- - - Caurel-Truchas, Orense León. , , . , , . . , - . , - , , , , -, .
  相似文献   

6.
Rocks metamorphosed in two or more different facies are not necessarily polymetamorphic and are termed plurifacial rocks. The following age sequence of metamorphic facies of alpine age is reported: (1) glaucophane-schist facies; (2) albite-epidote-amphibolite facies; (S) almandine-amphibolite facies. There was a transition from kinematic to static conditions. The alpine metamorphism described seems to have proceeded under a pile of overthrust sheets. The change in metamorphic facies was in part due to a considerable rise of the temperature.
Zusammenfassung In mehreren verschiedenen Fazies metamorphosierte Gesteine brauchen nicht polymetamorph zu sein, und werden als plurifazielle Gesteine bezeichnet. Folgende zeitliche Abfolge metamorpher Fazies alpinen Alters wird beschrieben: 1. Glaukophanschieferfazies, 2. Albit-Epidot-Amphibolitfazies, 3. Almandin-Amphibolitfazies. Es gab einen Übergang von kinematischen zu statischen Bedingungen. Die beschriebene alpine Metamorphose scheint unter einer Deckenlast vor sich gegangen zu sein. Der zeitliche Fazieswechsel wurde z. T. von einer beträchtlichen Temperatursteigerung bedingt.

Résumé Les roches montrant plus d'un seul faciès métamorphique ne sont pas nécessairement polymétamorphiques et sont dénommées plurifacielles. Quant au métamorphisme alpin, l'ordre suivant de succession chronologique des faciès fut constaté: (1) le faciès à glaucophane, (2) le faciès amphibolite à albite-epidote, (3) le faciès amphibolite à almandin. Des conditions de métamorphisme cinématiques ont été suivies par des conditions statiques. Il paraît que le métamorphisme alpin décrit s'est effectué dans un géosynclinal de nappes. Le changement de faciès métamorphique dans le temps était partiellement dû à une augmentation considérable de la température.

. , .
  相似文献   

7.
The neotectonic movements on the Balkan Peninsula occurred after the last intense thrusting (Early Miocene), and after the Early — Middle Miocene planation. They were controlled by extensional collapse of the Late Alpine orogen, and by extension behind the Aegean arc, and were influenced by the complicated vertical and horizontal movements in the Pannonian region. The Stara-planina and Dinarian-Hellenic linear neotectonic morphostructures inherited the Alpine orogenic zones (Balkanides and Dinarides-Hellenides) and bounded the Central-Balkan neotectonic region. The linear morphostructures were tilted towards the Pannonian and Euxinian basins and the North-Aegean trough.The Central-Balkan neotectonic region has a complicated block structure (horst-and-graben pattern) dominated by the NNW-SSE Struma and Vardar lineaments, the WNW-ESE Sava and Marica lineaments, and the Middle-Mesta and North Anatolian fault zones. The dominating Serbo-Macedonian neotectonic swell was rifted, and subsided along the Struma and Vardar lineaments. The range of the vertical neotectonic displacements reached a maximum of 3–4 km, and even up to 6 km at the edges of the Pannonian and Aegean basins. The general doming of the region was controlled by the isostatic uplift of a thickened crustal lens (Rhodope Massif) in the southern margin of the Eurasian plate. The collapse of the complicated domal structure began along the main (Struma, Vardar and Marica) lineaments in the central parts of the dome, and continued in the Pliocene and Quaternary along a more external contour bounded by the Stara-planina and Dinarian-Hellenic linear morphostructures.
Zusammenfassung Die neotektonischen Bewegungen der Balkan-Halbinsel begannen nach den letzten intensiven Überschiebungen (frühes Miozän) und nach der frühbis mittelmiozänen Verebnung. Gesteuert wurden die Bewegungen durch den Dehnungskollaps des spätalpinen Orogens, der Dehnung hinter dem Ägäischen Bogen und den komplizierten vertikalen und horizontalen Bewegungen in der pannonischen Region. Die neotektonische Region des Zentralbalkans liegt zwischen den linearen, neotektonischen Morphostrukturen der Strara-planina und der Dinariden-Helleniden. Sie übernahmen die alpidischen Orogenzonen der Balkaniden und Dinariden-Helleniden und wurden zum Pannonischen-, dem Präkarpatischen- und dem Nordägäischen Trog geneigt.Die Region zeigt einen komplizierten Blockaufbau (Horst- und Grabenstrukturen), der von den NNW-SSE streichenden Struma- und Vardar-Lineamenten, von den WNW-ESE verlaufenden Sava- und Marica-Lineamenten und der Mittelmesta- und der Nordanatolischen Bruchzone dominiert war. Die Serbo-mazedonische neotektonische Schwelle war von Bruchspaltenbildung und Absenkung parallel der Struma- und Vardar-Lineamente betroffen. Die Höhe der vertikalen Versatzbeträge erreichte ein Maximum von 3–4 km; an den Rändern des Pannonischen und Ägäischen Beckens sogar mit bis zu 6 km. Die allgemeine Aufwölbung der Region wurde durch isostatische Hebung der verdickten Krustenteile (Rhodopisches Massiv) am Südrand der Eurasischen Platte bedingt. Der Kollaps der komplizierten Domstruktur begann in dessen Zentralteil entlang der Hauptlineamente (Struma-, Vardar- und Marica-Lineament) und setzte sich, während des Pliozäns und Quartärs, in den peripheren Bereichen, parallel zu den äußeren Begrenzungen (Balkaniden, Dinariden-Helleniden) der linearen Morphostrukturen, fort.

Résumé Les mouvements néotectoniques dans la péninsule balkanique ont eu lieu après les derniers charriages d'âge miocène inférieur et la pénéplanation du Miocène inférieur et moyen. Ils ont été régis par l'affaissement extensionnel de l'orogène alpin tardif, par l'extension derrière l'arc égéen et par les mouvements verticaux et horizontaux complexes dans la région panonnienne. La région néotectonique centrebalkanique est située entre les morphostructures néotectoniques linéaires de Stara-Planina et des Dinarides-Hellénides. Celles-ci sont héritées des zones orogéniques alpines des Balkanides et des Dinarides-Hellénides et ont été inclinées vers les bassins panonnien, euxinien et nord-égéen.La région possède une structure en blocs (horsts et grabens) compliquée, dominée par les linéaments NNW-SSE de Struma et du Vardar, les linéaments WNW-ESE de Sava et de Marica et les zones faillées de Moyenne Mesta et d'Anatolie du nord. La ride néotectonique serbo-macédonienne a subi rifting et subsidence au long des linéaments de Struma et du Vardar. Les déplacements néotectoniques verticaux ont atteint 3 à 4 km au maximum, et même 6 km dans les bordures des bassins panonniens et égéen. Le soulèvement en dôme de la région a été provoqué par la montée isostatique d'une portion épaissie de l'écorce (massif du Rhodope) dans la marge méridionale de la plaque eurasiatique. L'affaissement de cette structure en dôme complexe a commencé le long des linéaments principaux (de Struma, Vardar et Marica) dans les parties centrales du dôme et a continué pendant le Pliocène et le Quaternaire le long d'un contour plus externe limité par les morphostructures néotectoniques linéaires de Stara-Planina et dinarohellénique.

( ) -, . , . - . - , - . NNWSSO, WNW-OSO . - . 3–4 , 6 . . ( , ) , , .
  相似文献   

8.
It seems possible to locate some of the volcanic centres of the greenstone effusions of the Caledonian geosynclinal volcanism in Norway from simple geologic features, such as greenstone thickness and character, gabbro intrusion intensity, and quartz keratophyre frequency. In the central part of the Trondheim region some six probable and four likely volcanoes are indicated. The best example may be the upturned Joma volcano further north.
Zusammenfassung Es scheint möglich, einige der vulkanischen Zentren der Grünsteineffusionen im Vulkanismus der kaledonischen Geosynklinale durch einfache geologische Merkmale wie Mächtigkeit und Charakter des Grünsteins, Intensität der Gabbrointrusion und Häufigkeit der Quarzkeratophyre aufzufinden. Im Mittelteil des Trondheimgebietes werden 6 wahrscheinliche und 4 mögliche Vulkane angegeben. Das beste Beispiel wäre vielleicht der umgekehrte Joma Vulkan weiter nördlich.

Résumé Il semble probable de localiser quelques-uns des centres volcaniques des émissions de « greenstone » dans le volcanisme géosynclinal calédonien en Norvège d'après des marques géologiques comme l'épaisseur et le caractère de «greenstone», l'intensité de la gabbro intrusion, et la fréquence de quartz kératophyre. Au milieu de la Trondheim région on constate six volcans probables et quatre volcans possibles. Le meilleur exemple est peut-être le Joma volcan renversé plus au nord.

, .: , , . Trondheim .


Dedicated to Professor Dr. A.Rittmann on the occasion of his 75. birthday  相似文献   

9.
The widespread occurrence of cordierite in the Archean metasediments near Yellowknife was attributed by earlier workers to the contact metamorphism associated with the granite. However, detailed field and textural studies on the cordierite-bearing rocks near Sparrow Lake indicate that the growth of cordierite is not restricted to the aureole around the Sparrow Lake granite. Fabric relations demonstrate that cordierite grew under regional metamorphic conditions existing before and after the intrusion of the granite. Emplacement of the Sparrow Lake pluton is considered to represent the culmination stage of regional tectonism that manifested itself as deformation, metamorphism and granite intrusion in the Sparrow Lake area.
Zusammenfassung Die Verbreitung von Cordierit in den archaischen Metasedimenten bei Yellowknife führten frühere Autoren auf die mit dem Granit verbundene Kontaktmetamorphose zurück. Genaue Gelände- und Strukturuntersuchungen an den cordieritführenden Gesteinen aus dem Gebiet von Sparrow Lake zeigen jedoch, daß das Wachsen von Cordierit nicht auf die Aureole um den Sparrow Lake-Granit beschränkt ist. Gefüge-Beziehungen beweisen, daß Cordierit unter regionalen metamorphen Bedingungen gebildet wurde, die vor und nach der Intrusion des Granits herrschten. Die Bildung des Sparrow Lake-Plutons wird als Höhepunkt regionaler tektonischer Vorgänge angesehen, die im Sparrow Lake-Gebiet als Deformation, Metamorphose und Granitintrusion in Erscheinung traten.

Résumé L'extension de la cordiérite dans les métasédiments archéens de la région de Yellowknife fut longtemps attribuée au métamorphisme de contact associé au granite. Cependant des études précises sur le terrain et l'examen de la texture des roches à cordiérite indiquent que la croissance de la cordiérite n'est pas restreinte à l'auréole du granite du lac Sparrow. Les relations vectorielles démontrent que la croissance de la cordiérite s'est effectuée dans des conditions métamorphiques régionales existant avant et après l'intrusion du granite. La mise en place du pluton du lac Sparrow réprésenterait donc l'étape culminante de la tectonique régionale qui dans la région du lac Sparrow s'est manifestée par la déformation, le métamorphisme et l'intrusion granitique.

, . Yellowknife , Sparrow-Lake. , , . Sparrow-Lake , , , .
  相似文献   

10.
Geology must consider the physical processes involved in the genesis of inorganic matter. These processes are ultimately based on cosmogony and cosmology and the associated physics and mathematics of these origins.The approach to genesis impinges on the unknown where a feeling that something finite, and possibly real, exists. The evidence of the unknown must then be compared with the experimental and observed evidence to create a framework from which certain conclusions can be made.The thoughts on genesis and the geological implications are discussed briefly in two parts. Part one includes the basic philosophy, the mathematical and physical concepts; it outlines the philosophy of time, zero and infinity, mass, space, and the mass environments, based on this a ring hypothesis of planetary origins is developed. Part two discusses basic problems of structural geology, fundamental tectonics, the development of continents and continental drift, climatic changes, seismicity, and paleomagnetics.The conclusions drawn from the discussion are: mass ormatter can exist in five states. Continental buttresses are largely made up of rocks of secondary igneous origin. The core of the earth is made of solar (meteoric) material rather than pure nickel-iron. Continents move under differential density forces which ultimately result in a slow twist or rotation of the earth's outer layers about the core. This rotation causes climatic changes and the many paths observed in tracing polar wandering by paleomagnetics.
Zusammenfassung Dieser Aufsatz versucht, fundamentale geologische Grenzprobleme in Beziehung zu bringen mit fundamentaien physikalischen und astronomischen Problemen, die ihrerseits z. T. noch einer Lösung harren.Ausgehend von einer Betrachtung der Herkunft von Masse, Universum und Sonnensystem werden Probleme der Kontinentalgenese, Kontinentalwanderung, hydrostatischer Druck auf und in Kontinenten, Orogenese, Klimaänderungen und Paläomagnetik in geologischer Zeit besprochen.Der Aufsatz besteht aus zwei Teilen, einem physikalischen und einem geologischen, die zu einem gewissen Grade unabhängig voneinander gelesen werden können. Für ein fruchtbares Verstehen ist es aber ratsam, beide Teile zu lesen. Mathematik ist auf das notwendigste beschränkt.Am Ausgangspunkt der Betrachtung steht die Idee von einem fundamentalen (letztlichen) Masse-Medium, da dieses die Grenze der Erkenntnis bildet.

Résumé La géologie doit considérer le processus physique entraîné dans la genèse de matière inorganique. Ce processus est finalement basé sur la cosmogonie et cosmologie, ainsi que la physique associée et mathématiques de ces originesL'approche de la genèse se heurte à l'inconnu où le sentiment de quelque chose de fini et peut-être bien réel existe. L'évidence de l'inconnu doit alors être comparée à l'évidence expérimentale et observée, pour créer une structure de laquelle certaines conclusions peuvent être tirées.Les réflexions sur la genèse et les implications géologiques sont exposées brièvement en deux parties. La première partie comprend la philosophie fondamentale, les idées générales de mathématique et physique; elle esquisse la philosophie du temps, zéro et infini, masse, espace et environnements de la masse; basée là-dessus, une hypothèse en cercle des origines planétaires est développée. La seconde partie expose les problèmes fondamentaux de géologie structurale, tectoniques fondamentales, le développement des continents et le mouvement de ceux-ci, changements de climat, séismicité et paléomagnétiques.Les conclusions tirées de l'exposé sont que masse ou matière peuvent exister dans cinq états. Les contreforts continentaux sont en grande partie formés de roche pyrogène secondaire. Le noyau de la terre est fait de matière solaire (météorique) plutôt que de nickel-fer pur. Les continents se déplacent sous des forces de densité différentielle qui résultent finalement dans une torsion lente ou rotation des couches extérieures de la terre autour du noyau. Cette rotation provoque des changements climatique et les nombreuses voies observées en traçant les écarts polaires par paléomagnétique.

. : , , .
  相似文献   

11.
The continental crust of the Central Baltic Shield evolved by accretion towards the west during the Svecokarelian orogeny 1700–2200 Ma ago. The following features are consistent with a plate tectonic mechanism involving subduction of oceanic crust below an Archean craton in the east: flysch-sediments with serpentinite masses and pillow lavas, linear high-grade metamorphic zones, island-arc type volcanic belts and late tectonic batholiths with porphyry type Cu-Mo deposits.Semi-consolidated new crust was affected by late Svecokarelian deformation (Dn) after 1850 Ma; NNE-trending folds with crenulation cleavage were overprinted on older structures together with associated NW trending ductile transcurrent shear zones that curve the Fn folds into gentle S and Z shapes. The late tectonic batholiths intruded partly at the same time as and partly after the Dn deformation.
Zusammenfassung Die kontinentale Kruste des zentralen Baltischen Schildes entwickelte sich durch nach Westen gerichtetes Anwachsen während der Svecokarelischen Orogenese vor 1700 bis 2200 Ma. Die folgenden Erscheinungsformen lassen sich mit einem plattentektonischen Mechanismus in Einklang bringen, der Subduktion von ozeanischer Kruste unter einen Archaischen Kraton im Osten einschließt: Flysch-Sedimente mit Serpentinit-Massen und Kissenlaven, lineare hochmetamorphe Zonen, vulkanische Gürtel vom Inselbogen-Typ und spättektonische Batholithe mit porphyrischen Cu-Mo-Lagerstätten.Die halbkonsolidierte neue Kruste wurde durch späte Svecokarelische Deformation (Dn) nach 1850 Ma erfaßt; NNE-orientierte Falten mit Krenulationsschieferung wurden älteren Strukturen aufgeprägt in Verbindung mit NW-streichenden, plastischen Transcurrent-Scherzonen, die die Fn-Falten in sanfte S- und Z-Formen verbiegen. Die spättektonischen Batholithe intrudierten teils während, teils nach der Dn-Deformation.

Résumé La croûte continentale du Boucher baltique central a évolué par voie d'accrétion vers l'ouest durant l'orogénie svécocarélienne 1700–2200 Ma. Les événements suivants sont en accord avec un mécanisme de tectonique de plaques impliquant la subduction d'une croûte océanique sous un craton archéen à l'est: sédiments flyschoïdes avec masses de serpentinite et de laves en coussins, zones linéaires à haut degré de métamorphisme, ceintures volcaniques du type guirlande d'îles et batholithes tectoniques tardifs avec gisements porphyriques de type Cu-Mo.La nouvelle croûte à semi-consolidée fut affectée par une déformation svécocarélienne tardive (Dn) postérieure à 1850 Ma. Des plis de direction NNE avec clivage de crénulation ont été superposés sur des structures plus anciennes, associés à des zones de cisaillement transcurrentes de direction NW qui ont incurvé les plis Fn suivant des formes en S et Z. Le batholithe tectonique tardif s'est mis en place en partie au même moment que, et en partie après, la déformation Dn.

, , 1500–2200 . , , : ; ; - . , 1850 ; NNE- , , NW , , Fn S Z. , .
  相似文献   

12.
The Mesozoic Lusitanian Basin developed as a part of the North Atlantic rift system. Tectonic rifting activity was rejuvenated during the Upper Jurassic, leading to intensive differentiation of facies development. Kimmeridgian and Lower Tithonian calcareous and siliciclastic sediments represent basinal and slope, shallow marine, and terrestrial environments. The lithostratigraphic arrangement of facies units is demonstrated. Sediment character, distribution and thicknesses are mainly controlled by synsedimentary faulting, with a partial overprint by uprise of salt diapirs. Eustatic sea level fluctuations, exogenic and biogenic factors resulted in additional control on facies development.Comparing bathymetric development of major basin sections and simplified plotting on a common time scale is a simple tool to unravel the multifactorial control of sedimentation and to test the validity of some biostratigraphic markers.During the Kimmeridgian, paleogeography was mainly determined by intensive subsidence of the basin center, by a large linear uplift zone m the north, and by a high amount of clastic influx. At the end of the stage and during the Tithonian, overall subsidence slowed down and inner basin uplifts arose further south. Degree of clastic input was variable. Thus shallow water carbonates were episodically widespread throughout the basin and mixed calcareous-clastic sequences were common. Sheltering and trapping effects resulted in local facies variations. Towards the Cretaceous the basin sanded up from northern, eastern and, particularly, northwestern directions.
Zusammenfassung Das mesozoische Lusitanische Becken entstand als Teil des nordatlantischen Riftsystems. Während des Oberjuras lebte die tektonische Aktivität erneut auf und führte zu einer intensiven Differenzierung der faziellen Entwicklung. Die Kalke und Siliziklastika des Kimmeridge und Unteren Tithons, deren lithostratigraphische Beziehungen dargestellt werden, repräsentieren Becken-, Hang- und Flachwasserablagerungen sowie terrestrische Sedimente.Synsedimentäre Tektonik bestimmte überwiegend die Ausbildung, Verteilung und Mächtigkeiten der Sedimente. Halokinese, eustatische Meeresspiegelschwankungen, exogene und biogene Faktoren kontrollierten die Faziesverteilung zusätzlich. Ein Vergleich der bathymetrischen Entwicklung aller grö\eren Beckenprofile und Standardisierung auf eine gemeinsame Zeitachse erlauben, die überlagerung der einzelnen Kontrollfaktoren zu entschlüsseln sowie den Wert einiger biostratigraphischer Bezugshorizonte zu testen.Während des Kimmeridge wurde die Paläogeographie vor allem durch starke Subsidenz des Beckenzentrums sowie durch eine gro\e lineare Hebungszone im Norden und durch hohe klastische Zufuhr bestimmt. Am Ende des Kimmeridge und während des Tithons verlangsamte sich die Subsidenz. Anhebung innerer Beckenteile und schwankende Zufuhr von Klastika bewirkten die episodische Ausbreitung von Flachwasserkarbonaten und die verbreitete Entwicklung gemischt kalkig-klastischer Serien. Abschirmungs- und Abfangeffekte erlaubten kleinräumige Faziesvariationen. Zur Kreide hin verlandete das Becken durch klastische Zufüllung aus nördlicher, östlicher und vor allem nordwestlicher Richtung.

Resumo Durante o Mesozóico, a Bacia Lusitânica desenvolveu-se como parte do sistema »rift« do Atlântico do Norte. A actividade tectónica, tipo »rifting« renasceu durante o Jurásico Superior, causando uma diferenciaÇÃo intensa no desenvolvimento de fácies. Os sedimentos calcários e siliciclásticos do Kimeridgiano e Titoniano inferior representam ambientes do mar mais ou menos profundo (fundo de bacia, declive, lagoa, delta) e ambientes continentais. O quadro litoestratigráfico das unidades de fácies é elaborado.O carácter, a distribuiÇÃo e a espessura dos sedimentos sÃo sobretudo controlados pela actividade tectónica sinsedimentária. Movimentos halokinéticos, fluctuaÇÕes eustáticas do nível do mar, e factores exogénicos e biológicos resultaram num controle adicional do desenvolvimento de fácies.Uma medida simples para destrinÇar os factores diferentes da sedimentaÇÃo e para testar o valor de alguns »markers« bioestratigráficos é comparar o desenvolvimento batimÊtrico dos coites principais da bacia e estandardizá-los num comum eixo temporal.Durante o Kimeridgiano, a paleogeografia foi dominada pela subsidÊncia intensa do centro da bacia, por um grande levantamento estreito no Norte, e por um grau elevado de introduÇÃo de clásticos. No fim do estágio e durante o Titoniano, a subsidÊncia geral diminuiu-se e novos levantamentos surgiram mais no Sul. O grau de introduÇÃo de clásticos foi variável. Por consequÊncia, calcários de agua pouco profunda alargaram-se por vezes sobre grandes partes da bacia e sequÊncias mistas de calcários e clásticos foram comum.No fim do Jurásico o mar desapareceu por causa de enchimento da bacia por clásticos de proveniÊncia norte, este, e partialmente noroeste.

qM - . . , , , - ; ., . , , , . . , . . , - . «» « » . , , , , -, .
  相似文献   

13.
Résumé Les faunes de Mollusques découvertes pendant les dix dernières années, auxquelles s'ajoutent des arguments d'ordre paléoclimatique, tectonique et paléogéographique, prouvent que les dépÔts de ce bassin, que l'on attribuait à l'Oligocène et à tout le Miocène presque, appartiennent en réalité au Tortonien supérieur. La sédimentation a commencé pendant les derniers mouvements de la phase styrienne pour s'achever au début des mouvements de la phase moldave. à l'époque relativement calme qui sépare ces deux phases se sont formées les quelques 27 couches de charbon à épaisseurs, par endroit, remarquables.
So far the Petroeni Basin has been investigated only on a local scale without taking into account either the numerous and important advances related to the knowledge of some large areas belonging to Carpathian regions, or the evolution of the adjacent Neogene basins. The Oligocene and Aquitanian ages were assigned to these deposits by the first geologists without sufficient consideration of the palaeontological basis. These ages have been accepted for many years. The field work of the last years yielded the discovery of a rich Tortonian fauna. Palaeontological, palaeoclimatic and tectonical data suggest, for the time being, that the entire series of sediments in the basin represents a sole stage — the Tortonian. This stage cannot be considered complete but is represented only by its upper part. The assumption that all the deposits of the basin are Tortonian in age can be supported only with difficulty, but it is the only age which accounts for all geological observations. The large thickness of the deposits is considered the result of intense subsidence, during the Upper Styrian movements of ruptural character, which led to formation of a relatively small-sized graben. The exclusive presence of the Upper Tortonian tallies with the importance of the transgression which took place at the end of the Middle Miocene over large areas of the Carpathian regions.

Zusammenfassung Das Petroenier-Becken wurde bis heute nur in einem ganz engen Rahmen untersucht, ohne die zahlreichen und wichtigen Fortschritte über den Weidegang der Karpaten und der benachbarten neogenen Becken zu berücksichtigen. Das oligozäne und aquitanische Alter der Ablagerungen, das von den ersten Forschern postuliert wurde, ist von den meisten Geologen bis ins letzte Jahrzehnt angenommen worden. Es mangelte jedoch an einer vertieften paläontologischen Grundlage. Die reichhaltige Flora hat sich für die eindeutige Bestimmung des Alters als unzureichend erwiesen. Die fünf festgestellten lithologischen und biologischen Fazies wurden irrtümlicherweise als verschiedene Altersstufen des Oligozäns und des Miozäns betrachtet. Die Feldarbeiten im letzten Jahrzehnt haben jedoch eine reiche Molluskenfauna tortonischen Alters erbracht. Paläontologische, paläoklimatische und tektonische Ergebnisse bezeugen heute, daß die meisten Ablagerungen nur einer einzigen Stufe, nämlich dem Torton, angehören. Eine nähere Untersuchung lehrt weiter, daß auch das Torton unvollständig abgelagert wurde, da es nur durch sein letztes Drittel vertreten ist. Die letzten Ablagerungen gehören möglicherweise dem ältesten Sarmatikum an. Der Schluß über das spätmittelmiozäne Alter des ganzen Schichtkomplexes ist der einzige, welcher uns heute erlaubt, sämtliche geologischen Tatsachen zu verstehen. Die etwa 2000 m Mächtigkeit der Schichten ist die Folge einer intensiven Ablagerung in einem tiefen Einbruchsbecken während der mittelmiozänen Bewegungsphasen. Die Ablagerung der Kohlenflöze entspricht der Ruhezeit zwischen den steyerischen und den moldavischen Krustenbewegungen. Das mittelmiozäne Alter der Schichten des Beckens von Petroeni steht mit der weiten mittelmiozänen Meerestransgression in Mittelund Südosteuropa im Einklang.

— . , , . . , 25 , , , , .
  相似文献   

14.
Zusammenfassung über die Pucará-Sedimente im Chanchamayo-Gebiet und im ganzen zentralen Ost-Peru liegt bisher noch keine Bearbeitung vor. Hier werden Ergebnisse aus der Feldarbeit zur Stratigraphie, zu Ausdehnung und Mächtigkeit mitgeteilt.Die Basis des Pucará wird stratigraphisch festgelegt, und es wird gezeigt, daß zumindest im untersuchten Gebiet keine Diskordanz zwischen Mitu und Pucará liegt. Die Dreiteilung des Pucará vonMégard (1968) aus den Zentralanden konnte auch hier nachgewiesen werden; die Mächtigkeiten sind allerdings etwas abweichend. Es werden Leithorizonte und paläontologische und petrographische Marken mitgeteilt. Im untersuchten Gebiet liegen nur Chambara und Aramachay vor; es erscheint zweifelhaft, ob hier überhaupt marine Kreide vorhanden gewesen war; Teile, die zuweilen als Kreide angesprochen werden, konnten als Aramachay bestimmt werden. Das Pucará-Meer hatte anscheinend zwischen dem schon beschriebenen Teil in den Zentralanden (Mégard, 1968;Szekely &Grose, 1972) und dem hier bearbeiteten Teil eine Schwelle, aus der sich dann die Granitintrusion des Batholithen von San Ramon entwickelte (Levin, 1972).
So far a publication dealing with the Pucará sediments in the Chanchamayo area and also in all central Eastern Peru is not existent. This report contains results from field work concerning stratigraphy, distribution, and thickness.For the first time the stratigraphical basis of the Pucará is determined; it is also shown that there is no unconformity between Mitu and Pucara within the area explored. It was possible to prove the subdivision of the Pucará into three formations — as set up for the Central Andes byMégard (1968); the surveyed thickness of the formations varies slightly fromMégard's findings. The report includes stratigraphically characteristic formations and paleontological and petrographical keybeds. Only Chambara and Aramachay are present in the surveyed area; it seems dubious whether marine Cretaceous has been existent at all. It was possible to determine formations such as Aramachay which sometimes are taken for Cretaceous sediments. Apparently the bottom of the Pucará sea was divided by a ridge between the formerly described area in the Central Andes (Mégard, 1968;Szekely &Grose, 1972) and the area described above. The granite batholith of San Ramon originated from this ridge (Levin, 1972).

Resumen Tanto en la región Chanchamayo como en todo el PerÚ Central del Oeste no se ha hecho ningÚn trabajo sobre los sedimentos de Pucará. Damos aquí los primeros datos del trabajo del campo sobre la estratigrafía, extensión y potencia de los mismos.Se define por primera vez la base del Pucará estratigraficamente y se prueba que, al menos en la zona investigada, no hay discordancia entre Mitu y Pucará. Se ha podido aplicar la clasificación en tres pisos en queMégard (1968) divide el Pucará de los Andes Centrales, pero las potencias son aquí algo diferentes. Se establecen horizontes guias y características paleontológicas y petrográficas. En la región investigada aparecen solamente Chambara y Aramachay, pero es dudoso que haya habido nunca Cretaceo marino; es más, se han podido identificar como Aramachay estratos que a veces se habían dado por Cretaceo. Probablemente había en el mar del Pucará, entre la parte ya conocída (Mégard, 1968;Szekely &Grose, 1972) en los Andes Centrales y la aquí descrita, una barra a partir de la cual se desarrolló la intrusión del batolito granitico de San Ramon (Levin, 1972).

. , . ; , , , . , Megard'o (1968) , ; , . , . ; , - . , , , , . , , Megard, 1968, Szekely & Grose, 1972) , - (, 1972).


Allen seinen Freunden und Mitarbeitern in Peru dankt der Verfasser herzlich für ihre Hilfe, besonders Frau Dr.Rosalwina Rivera für die Bestimmung vieler Fossilien, Herrn Dr.César Cánepa für viele Hinweise und Unterstützung,Alberto Samaniégo für die Mitarbeit im Feld undJuan Muñiz für die Einführung in die Besonderheiten des Landes. Die Arbeit entstand auf Anregung und mit Unterstützung von Herrn Prof. Dr. G. C.Amstutz, Min.-Petr. Inst. der Universität Heidelberg.  相似文献   

15.
The remanent magnetization of the andesitic cover of the Sesia-Lanzo Zone has been studied from 16 sites along three transversal sections. The remanent magnetization of the rock is stable and it appears to be primary after a conglomerate test. The mean direction of magnetization is consistent for all sites, but for one exception, with satisfactory values of statistical parameters. Therefore no deformation structures postdating the acquisition of remanent magnetization can be inferred from palaeomagnetic data. The mean direction of magnetization (11 sites, 152 specimens) is: D=135.9, I=–2.9, with 95=8.8. No tectonic correction can yet be made.
Zusammenfassung Die natürliche remanente Magnetisierung der Andesiten, die die Bedeckung der Sesia-Lanzo Zone bilden, ist an 16 Orten gemessen worden, die entlang drei Querdurchschnitten liegen. Das Gestein besitzt eine stabile NRM, die auf Grund eines Konglomeratstest die ursprüngliche sein müßte. Alle Orte, die annehmbare statistische Werte aufweisen, außer einem, haben die gleiche Magnetisierungsrichtung. Die paläomagnetischen Messungen zeigen keine Strukturen aufeinanderfolgender Deformation bei dem Magnetisierungsvorgang. Die durchschnittliche Magnetisierungsrichtung (11 Orte, 152 Gesteinsproben) ist: D = 135,9, I = –2,9, mit 95 = 8,8. Keine tektonische Korrektur wird bisher eingerechnet.

Résumé L'aimantation rémanente des andésites qui constituent la couverture de la Zone Sesia-Lanzo a été mesurée en 16 endroits disposés le long de trois sections transversales. La roche a une aimantation rémanente stable, qui, d'après le test du conglomérat, devrait être originelle. Tous les endroits qui présentent des valeurs statistiques acceptables ont, sauf un, la même direction d'aimantation. Les mesures paléomagnétiques ne révèlent donc pas de structures de déformation consécutive à l'acquisition de l'aimantation rémanente. La direction moyenne de l'aimantation (11 sites, 152 échantillons) est: D=135.9, I=–2.9 avec 95=8.8. On n'a pas apporté, pour l'instant, de correction tectonique.

, Sesia-Lanzo, 16- , . , , , . , , , . , . (11 , 152 ) : D=135,9; =–2,9 95=8,8. .
  相似文献   

16.
Holocene and late-Pleistocene sedimentation in the Adriatic Sea   总被引:1,自引:0,他引:1  
The following paper is a summary of sedimentological data on the Adriatic Sea (with the exception of the areas along the Jugoslavian and Albanian coasts). Because it is difficult to summarize a summary, only a few of the main conclusions will be mentioned here.Geophysical investigations indicate that the top of the limestone series, underlying the clayey and sandy deposits of the Pliocene and the Quaternary in the Adriatic area has a very uneven topography. Its greatest depths (4–6 km) are found a) between Ravenna and Rimini, b) between San Benedetto and Pescara, and c) below the Albanian shelf.Recent sands are mainly limited to the littoral zone; pleistocene sand, originally supplied by rivers, covers the greater part of the deeper shelf. Between these zones a terrace-shaped pro-littoral mud belt is present, where the bulk of the recent terrigenous mud is deposited. The maximum rate of accumulation in this belt is probably about 4 1/2 mm per year.The remaining part of the recent mud is transported in the sea water as floccules of such small size that they remain suspended over the deeper zones of the shelf. Most of it is deposited in the basins of the Central Adriatic (maximum accumulation rate for the Holocene on the average circa 1/2 mm per year) and in the bathyal basin in the southeast. The deepest area of the latter basin is formed by an almost horizontal plain (circa 1218 m deep). The longest core from this plain (240 cm of Holocene and 400 cm of late Pleistocene) is composed for roughly 61% of turbidite material, 5% of volcanic ash (coarser than fine silt), 0,2% of organic carbonate remains (coarser than silt) and 34% of normal terrigenous mud. The ash falls were limited to the central and southeastern parts of the Adriatic.
Zusammenfassung Eine kurze Übersicht wird gegeben über die sedimentologische Kenntnis der Adria (mit Ausnahme der jugoslawischen und albanischen Küstengewässer).Geophysikalische Untersuchungen zeigen, daß die Kalkstein-Oberfläche unter den tonig-sandigen Ablagerungen des Pliozäns und des Quartärs, ein starkes Relief besitzt. Sie hat ihre größten Tiefen (4–6 km) a) zwischen Ravenna und Rimini; b) zwischen San Benedetto und Pescara und c) im Untergrund des Albanischen Schelfes.Rezente Sande sind in der Hauptsache auf eine schmale Küstenzone beschränkt. Dagegen haben pleistozäne Residual-Sande, ursprünglich von Flüssen herbeigebracht, eine große Ausdehnung auf dem Schelf. Zwischen diesen beiden sandigen Zonen findet man einen pro-littoralen Schlicksaum, wo die Hauptmasse des rezent ins Meer gebrachten terrigenen Schlickes abgelagert wird. Die maximale Akkumulationsgeschwindigkeit in dieser Zone beträgt wahrscheinlich ungefähr 4 1/2 mm pro Jahr.Der Anteil des terrigenen Schlickes, der nicht in diesem prolittoralen Schlicksaum zur Ablagerung kommt, besteht aus Flocken von so kleinen Abmessungen, daß sie während ihres Transportes über den äußeren Schelf-Regionen suspendiert bleiben. Sie sedimentieren größtenteils in den Becken der Zentral-Adria (mittlere Ablagerungsrate während des Holozäns maximal etwa 1/2 mm pro Jahr) und im bathyalen Becken der Südost-Adria.Der tiefste Teil dieses südöstlichen Beckens wird von einer fast horizontalen Ebene (auf etwa 1218 m Tiefe) eingenommen. Der längste Kern, der in dieser Ebene entnommen wurde (640 cm, wovon 240 cm Holozän), hat ungefähr die folgende Zusammensetzung: 61% Turbidit-Material, 5% vulkanische Asche (Sand- und grobe Schluff-Fraktionen), 0,2% organische Kalkreste (gröber als Schluff) und 34% normaler terrigener Schlick. Die Aschenfälle waren auf die mittleren und südöstlichen Teile der Adria beschränkt.

Résumé L'auteur donne un bref résumé de la connaissance sédimentologique de la Mer Adriatique (à l'exception des parties le long des côtes Jugoslaves et Albanaises).Des recherches géophysiques indiquent que la surface du calcaire couvert par les dépôts argileux-sableux du Pliocène et du Quaternaire a un relief prononcé. Cette surface atteint des profondeurs maximales (4–6 km) a) entre Ravenna et Rimini, b) entre San Benedetto et Pescara et c) au-dessous du plateau continental Albanais.Les dépôts sableux d'âge Holocène sont limités pratiquement à l'étroite zone du littoral. Par contre, des sables pléistocènes résiduels, d'origine fluviale, couvrent de vastes étendues du plateau continental sous-marin. Entre ces deux zones sableuses, on trouve la bande vaseuse «pro-littorale», où se dépose la plus grande partie de la matière vaseuse terrigène, apportée à la mer sous les conditions actuelles. L'accumulation maximale dans cette zone est probablement de l'ordre de 4 1/2 mm par an.La partie de la vase terrigène qui dépasse cette bande pro-littorale est transportée dans la mer à l'état de flocons d'une taille si petite qu'ils restent en suspension au-dessus des parties extérieures du plateau continental. Ils sont déposés surtout dans les bassins de l'Adriatique Centrale (vitesse moyenne d'accumulation pendant l'Holocène au maximum environ 1/2 mm par an), et dans le bassin bathyal du Sud-Est.La partie la plus profonde dans ce dernier bassin est formée par une plaine presqu' horizontale (à environ 1218 m). La carotte la plus longue, tirée de cette plaine (640 cm, dont 240 cm d'Holocène) est constituée approximativement de 61% de matériel turbiditique, de 5% de matière volcanique (fractions de sable et de silt grossier), 0,2% de restes calcaires organiques (plus grossier que du silt) et 34% de vase terrigène normale. Les chutes de matière volcanique étaient limitées aux parties centrales et sud-orientales de l'Adriatique.

— . , . (4–6 ) : a) Ravenna Rimini; ) San Benedetto Pescara ) . , , - , , pro-litto-ralen , . 4,5 . , ( 1/2 ) - . 1218 . , 640 , 240 . : 61% , 5% , 0,2% 34% . - .
  相似文献   

17.
The orthogneisses of the Spessart crystalline complex are derived from a granitic to granodioritic magma of S-type character which must have formed by anatexis of continental crust. It intruded into a relatively shallow crustal level, 410–420 Ma ago, at the Silurian. Trace element characteristics are consistent with a post-collision geotectonic environment testifying to extensional tectonics at the end of the Caledonian era.
Zusammenfassung Die Orthogneise des Spessartkristallins lassen sich von einem granitischen bis granodioritischen Magma von S-Typ-Charakter ableiten, das durch Anatexis kontinentaler Kruste entstanden sein mu\ und in ein relativ oberflächennahes Krustenniveau intrudierte. Die Platznahme erfolgte vor 410–420 Ma, d. h. im Silur. Die Spurenelement-Muster der Orthogneise entsprechen denen von Post-Kollisions-Granitoiden, was als Hinweis auf eine Phase der Dehnungstektonik am Ende der kaledonischen ära bewertet werden kann.

Résumé Les orthogneiss du Spessart sont dérivés d'un magma granitique à granodioritique de type S qui doit s'Être formé par anatexie de la croûte continentale. Ce magma a été intrudé dans un niveau peu profond de la croûte il y a 410–420 Ma c'est-à-dire au Silurien. La distribution des éléments en traces est en accord avec celle des granitoÏdes formés dans un contexte géodynamique de post-collision. Cette observation est en faveur d'une phase d'extension tectonique à la fin du cycle calédonien.

, — Wojcieszów-Kalke. , — . . , , , , .
  相似文献   

18.
The entire pile of nappes in the eastern margin of the Bohemian massif is characterized by two stages of Variscan nappe emplacement each exhibiting a different kinematic and metamorphic evolution.The older emplacement (D1) probably occurred around 350-340 Ma ago and was synmetamorphic. The nappes show a typical systematic superposition of higher grade metamorphic units over lower grade ones. Thus, the crystalline complexes showing a HT-MP Barrovian imprint (Svratka allochthonous unit and Moldanubicum) were thrust over an intermediate unit affected by MTMP recrystallization (Bíte orthogneiss and its country rock), and at the base of the D1 nappe pile the Inner Phyllite Nappe (Biý Potok Unit) is characterized by LT/LP metamorphism.The second stage of tectonic evolution (D2) is characterized by a thin-skinned northward-oriented nappe emplacement that occurred under LT-LP conditions dated at 320-310 Ma. The whole nappe sequence formed during the first tectonometamorphic period (D1) was transported northward over the autochthonous »Deblín polymetamorphic and granitic complex« of Upper Proterozoic age and its Devonian sedimentary cover with very low metamorphism. During this second tectonic event the Brno granite massif (580 Ma) was only marginally incorporated in the Variscan nappe tectonics which resulted in kilometer-scale cover and basement duplexes. The tectonic evolution of the nappe pile ended with stage D3, represented by large- to medium-scale east-vergent folds with limited displacement.
Zusammenfassung Der Deckenbau am Ostrand der Böhmischen Masse erfolgte in zwei aufeinanderfolgenden Stadien, die sich sowohl in ihrer Kinematik als auch in ihrer Metamorphoseentwicklung deutlich voneinander unterschieden.Die ältere Phase (D1 ca. 350-340 Ma) ist durch synmetamorphe Überschiebungen charakterisiert. Sie führt zu einer metamorphen Inversion der überschobenen Deckeneinheiten, so daß generell hohe metamorphe Einheiten schwach metamorphe tektonisch überlagern. Der Svratka Komplex und das Moldanubikum als hangendste Decken sind durch MP/HT Paragenesen vom Barrow-Typ gekennzeichnet. Beide Einheiten sind auf den MP/MT-metamorphen Bite-Gneis und seine Rahmengesteine überschoben. Die Bílý potok Einheit als liegende Decke zeigt nur noch eine LP/ LT Regionalmetamorphose.Das jüngere Stadium (D2 ca. 320-310 Ma) ist durch eine Thin-skinned Tektonik mit nordvergentem Deckentransport unter LP/LT Bedingungen charakterisiert. Der gesamte, invers metamorphe D1-Deckenstapel wird dabei nach N über den autochtonen Deblín Komplex bzw. seine devonische Sedimenthülle überschoben.Das Brno Granit Massiv (580 Ma) wird nur randlich in diesen variszischen Deckenbau einbezogen. Die tektonische Entwicklung endet mit einem mittel bis großräumigen E-vergenten Faltenbau (D3 phase).

Résumé L'empilement des nappes a la bordure orientale du Massif de Bohème est caractérisé par deux stades de mise en place présentant différentes évolutions cinématiques et métamorphiques.La tectonique majeure de mise en place des nappes crustales intervient lors d'un métamorphisme de type barrowien, calé autour de 350-340 Ma. L'empilement qui en résulte montre une superposition systématique d'unités à fort degré de métamorphisme sur des unités moins métamorphiques. Ainsi les complexes cristallins, montrant des reliques de métamorphisme de haute à moyenne pression-haute température (unités cristallines de Svratka et du Moldanubien), chevauchent une unité intermédiaire affectée par un métamorphisme de moyenne à basse pression-moyenne température (l'orthogneiss de Bíte et son encaissant). A la base de cette pile édifiée durant la tectonique D1, l'unité des phyllites internes (unité de Bílý potok) est caractérisée par un métamorphisme de basse témperature-basse pression.Le second stade D2 de l'évolution tectonique est caractérisé par une tectonique pelliculaire à vergence nord datée à 320-310 Ma. L'empilement résultant de D1 est ainsi transporté vers le nord, au dessus du complexe autochtone d'âge protérozoïque supérieur (groupe de Deblín) et sa couverture sédimentaire dévonienne très faiblement métamorphisée.Le massif granitique de Brno (580 Ma) n'est que marginalement incorporé à cette tectonique de nappe varisque. Ceci se traduit par des duplex socle-couverture d'échelle plurikilométrique. L'évolution tectonique s'achève lors d'une troisième phase, marquée par de grands plis à vergence est. Le déplacement associé est alors d'amplitude limitée.

, . , 350-340 . . , , - ( ), , - ( ). , D 1, (- ) - . D 2 , 320-310 ., D 1, , , ( ) . (580 . ) , »« -, . , .
  相似文献   

19.
The volcano Savalan, located in Eastern Azerbaijan, is a big structure with andesitic to rhyodacitic products long considered to be Quaternary. Four K/Ar whole-rock age determinations on vulcanites point, however, to a long volcanic history, starting at least in the Upper Miocene. Three K/Ar absolute ages of volcanites erupted from other centers in the same province also provide evidence of calc-alkaline activity since Middle Miocene.Calc-alkaline activity of Miocene and later periods is well known in other parts of central-western Iran. It can be chronologically correlated with the rifting and oceanfloor spreading in the Red Sea, which began in the Miocene, and with attendant oceanic-crust subduction of the Arabian plate underneath the Iranian plate. The present-day halt in calc-alkaline magmatism may be explained by collision of the Arabian and Iranian continental masses, with limited underthrusting of Arabian continental crust. It is also suggested that the recent onset of alkali basalt volcanism in several districts of central and western Iran is related to the relaxation of compressional stresses following migration of deformation to the south-western part of the continental-crust prism below the Zagros belt facing the Persian Gulf and Mesopotamian trough edge.
Zusammenfassung Vier K/Ar Altersbestimmungen von Vulkaniten verschiedener Bildungen des Savalan Vulkans (Ost-Azerbaijan, Iran), der eine große Struktur mit andesitischen bis riodazitischen Produkten ist, und der für lange Zeit als Quaternär betrachtet worden ist, lassen auf eine lange vulkanische Geschichte schließen, die mindestens im oberen Miozän begann. K/Ar Altersbestimmungen von drei Vulkanit-Proben aus anderen Orten derselben Provinz weisen auch kalk-alkaline Aktivität ab Mittel-Miozän auf. Die Aktivität von diesem und späteren Alter, die in anderen Teilen Zentral- und WestIrans bekannt ist, kann kronologisch mit dem Rifting und Ocean-floor spreading im Roten Meer, die im Miozän begannen, und mit der zusammenhängenden ozeanischen Krust-Subduktion der Arabischen Platte unter die Iranische Platte, verbunden werden. Die Kollision der Arabischen und Iranischen Kontinentalmassen mit beschränkter Unterschiebung der Arabischen Kontinentalkruste kann die gegenwärtige Unterbrechung im kalk-alkalinen Magmatismus erklären. Es wird auch vorgeschlagen, daß der jüngste Ansatz vom alkali-basaltischen Vulkanismus in vielen Gebieten Zentral- und WestIrans auf die Entspannung von Stressen zurückzuführen ist, nach Verschiebung der Deformationen zum südwestlichen Teil des kontinentalen Krust-blocks unter die ZagrosKette gegenüber des Persischen Golfs und der Mesopotamischen Tiefebene.

Résumé Quatre échatillons de coulées laviques appartenant à différentes unités du cortège magmatique du volcan Savalan (Azerbaijan oriental, Iran) ont été daté par la méthode K/Ar sur roche totale. Ces nouvelles données radiochronologiques permettent de définir pour le Savalan (depuis longtemps estimé Quaternaire) une activité volcanique calealcaline qui a commencé au moins pendant le Miocène supérieur. Les âges (K/Ar) de trois échatillons de volcanites d'autres zones dans le même district montrent aussi la présence d'une activité cale-alcaline à partir du Miocène moyen. Ce volcanism, comme le suivant, remarqué dans les autres régions de l'Iran central et occidental, permet d'établir des relations chronologiques avec l'ouverture du rift de la Mer Rouge (qui l'on fait remonter au Miocène) et avec la subduction concomittante du fond océanique de la plaque arabique sous la plaque iranienne. La collision du bloc arabique avec le bloc iranien, suivie du sous-charriage, à un degré limité, de la croûte continentale arabique, pourrait expliquer l'actual arrêt du magmatisme cale-alcalin.De plus, le récent début du volcanisme basique alcalin dans beaucoup de zones centrales et occidentales de l'Iran, permettrait des corrélations avec le relâchement des forces de compression à la suite du déplacement de la déformation vers la partie sud-occidentale du prisme de croûte continentale sous la chaîne du Zagros qui donne sur les Golfe Persique et la dépression mésopotamienne.

4- - ( , ), , , , , , - . - . , , , . - . - , , .. , - .
  相似文献   

20.
In spite of the voluminous basaltic volcanism on the island of Hawaii, rhyolite is not produced. Iceland, on the other hand, exhibits common rhyolitic volcanism amounting to some 10–12% of its surface rocks. This contrast is investigated using the fundamental igneous processes exhibited by sheet-like Hawaiian lava lakes and Shonkin Sag laccolith in Montana. Highly differentiated, residual melts normally reside within inwardly advancing solidification fronts and are generally inaccessible to eruptive processes. Only when a large initial phenocryst population is present, from which a thick basal cumulate can rapidly form, is it possible to supply highly differentiated melt into the active (i.e., eruptable) portion of the magma chamber. Although there is protracted control of differentiation at Hawaii by settling of olivine, further differentiation occurs within the solidification fronts. Only by repeated transport and holding is it possible to differentiate beyond the critical composition of the leading edge of the solidification front ( 7% MgO and 51.5% SiO2). Crystal size distributions (CSDs) for Hawaii and Shonkin Sag are used to demonstrate the inferred physical and chemical processes of solidification, including the kinetics of crystallization.A ubiquitous feature of these basaltic bodies is the formation of coarse veins and segregations of refined melt and granophyres within the upper solidification front. It is this fundamental bimodal feature which is the key to understanding Icelandic silicic volcanism.Rhyolites in Iceland occur mainly as a bimodal population with basalts associated with central volcanoes. Rhyolites, granophyres, and felsites are common, with the intrusions often being layered. Ash flows and true granite-like intrusions are rare. The voluminous silicic lavas at Torfajokull central volcano contain disequilibrium phenocryst assemblages. This, and the disagreement in oxygen isotopic values between rhyolites and basalts, reflects extensive partial melting of the heterogeneous basaltic crust of Iceland to produce these rhyolites. Relatively small, chemically distinct, and spatially intimate silicic bodies are formed by concentrating granophyric segregations from earlier cycles of solidification. This process is also reflected in the layered granophyric instrusion of Slaufrudalur in eastern Iceland. Slaufrudalur is an unvented subterranean caldera, equivalent in igneous processes and style to the subaerial Torfajokull caldera.Hawaii is dominated by fractional crystallization due to crystal settling and does not produce rhyolite. Iceland's tectonics allow continual and extensive reprocessing of thin, hot basaltic crust which produces rhyolite by concentrating original silicic segregations and veins and by partially melting intermediate extrusives, which have subsided deep into the crust.
Zusammenfassung Auf Hawaii treten, trotz intensiven Basalt-Vulkanismusses, keine Rhyolithe auf. Auf Island dagegen ist Rhyolith, mit 10–12% des anstehenden Gesteins, verbreitet. Dieser Kontrast wurde anhand grundlegender magmatischer Prozesse untersucht, wie sie in flachen Lava-Seen Hawaiis und im Shonkin Sag Laccolith Montanas auftreten. Hochdifferenzierte Restschmelzen verbleiben innerhalb langsam nach innen vorrückender Erstarrungsfronten und sind meist unerreichbar für eruptive Prozesse. Nur wenn anfänglich bereits große Mengen von Einsprenglingen vorhanden sind, die rasch am Boden der Magmenkammer akkumulieren, kann eine hochdifferenzierte Schmelze in den aktiven (d.h. eruptiven) Teil der Magmenkammer gelangen. Obwohl auf Hawaii die Differentiation durch die Kristallisation von Olivin anhaltend kontrolliert wird, findet an der Erstarrungsfront weitere Differentiation statt. Nur durch wiederholten Transport und zeitweiliges Verharren ist es möglich, über die kritische Zusammensetzung der vordersten Erstarrungsfront hinaus zu differenzieren (ca. 7% MgO und 51,5% SiO2). An Kristallgrö-ßenverteilungen (CDS) von Hawaii und Shonkin Sag können die angenommenen physikalischen und chemischen Prozesse der Kristallisation und die Kristallisationskinetik gezeigt werden. Ein weit verbreitetes Merkmal dieser Basaltkörper ist die Bildung grobkristalliner Gänge und Absonderung von stark differenzierten Schmelzen und Granophyren innerhalb der oberen Erstarrungsfront. Diese ausgeprägt bimodale Charakteristik ist der Schlüssel zum Verständnis des sauren isländischen Vulkanismus.Isländische Rhyolithe treten meist in bimodaler Verbreitung mit Basalten in Zusammenhang mit zentralen Vulkanen auf. Rhyolithe, Granophyre und Feisite sind häufig, in oft geschichteten Intrusionen. Ignimbrite und echte Granitintrusionen sind selten. Die großen Mengen SiO2-reicher Laven am Torfajokull-Zentralvulkan enthalten Ein-sprenglinge, die sich nicht im Gleichgewicht mit der Matrix befinden. Dies, und die unterschiedlichen delta-18O-Werte von Rhyolithen und Basalten, zeigen, daß ausgeprägtes teilweises Aufschmelzen der heterogenen Basaltkruste von Island zur Produktion dieser Rhyolithe führte. Relativ kleine, nahe benachbarte saure Körper, die aber deutliche Unterschiede in ihrem Chemismus aufweisen, werden gebildet durch die Konzentration granophyrischer Teilschmelzen aus früheren Kristallisationszyklen. Dieser Vorgang wird auch widergespiegelt in der »layered intrusions« von Slaufrudalur in Ostisland. Slaufrudalur ist eine geschlossene unterirdische Kaldera, deren magmatische Prozesse und Baustil der subaerischen Torfajokull-Kaldera entsprechen.Die Prozesse in Hawaii sind dominiert von gravitativer Kristallisationsdifferentiation und es werden keine Rhyolithe produziert. Die isländische Tektonik führt zu kontinuierlicher starker Wiederaufarbeitung von dünner, heißer basaltischer Kruste. Dabei wird, durch die Konzentration ursprünglicher saurer Teilschmelzen und Gänge und durch die teilweise Aufschmelzung intermediärer Intrusiva, die tief in die Kruste abgesunken sind, Rhyolith produziert.

Résumé En dépit du volcanisme basaltique volumineux des îles Hawaï, il n'y existe pas de rhyolite. En Islande, par contre, le volcanisme rhyolitique est commun et représente 10 à 12% des roches de la surface. Ce contraste est examiné sur la base des processus ignés fondamentaux présentés par les lacs de lave d'Hawaï et le laccolite de Shonkin Sag au Montana. Normalement, les liquides résiduels hautement différenciés résident à l'intérieur des fronts de solidification qui progressent vers l'arrière et sont généralement à l'abri des processus éruptifs. Ce n'est que dans le cas d'une population initiale abondante de phénocristaux, qui se rassemblent dans un cumulat basai épais, que des liquides hautement différenciés peuvent être fournis à la portion active (c'est-à-dire »éruptible«) de la chambre magmatique. A Hawaï, bien que la différenciation soit continuellement régie par la cristallisation d'olivine, la poursuite du processus a lieu à l'intérieur des fronts de solidification. Ce n'est que par la répétition d'actions de transport et de stagnation qu'il est possible de différencier audelà de la composition critique du front de solidification (±7% MgO et 51,5% SiO2). A partir de la distribution de la taille des cristaux à Hawaï et à Shonkin Sag, on peut déduire les processus physique et chimique de la solidification, y compris la cinétique de la cristallisation.Une particularité courante de ces corps basaltiques est la formation de veines grenues et de ségrégations de liquides très différenciés et de granophyres à l'intérieur du front supérieur de solidification. Cette manifestation bimodale est la clé qui permet de comprendre le volcanisme siliceux islandais.En Islande, les rhyolites constituent d'ordinaire une population bimodale avec les basaltes centraux. Les rhyolites, les granophyres et les felsites sont fréquents, et souvent sous forme d'intrusions litées. Les coulées ardentes et les vraies intrusions de type granitique sont rares. Les volumineuses laves siliceuses du volcan central de Torfajokull contiennent des assemblages de phénocristaux en déséquilibre. Ce fait, ainsi que la non concordance des isotopes de l'oxygène entre rhyolites et basaltes, traduisent, à l'origine de ces rhyolites, une fusion partielle extensive de la croûte basaltique hétérogène d'Islande. Des corps siliceux relativement petits et chimiquement distincts bien que d'emplacements très voisins se sont formés par concentration de fusions partielles granophyriques lors des premiers cycles de solidification. Ce processus s'exprime également dans l'intrusion granophyrique litée de Slaufrudalur, en Islande orientale. Slaufrudalur est une caldeira souterraine fermée, équivalente par son style et son processus igné à la caldeira subaérienne de Torfajokull.A Hawaï, le phénomène dominant est la cristallisation fractionnée gravitative, sans production de rhyolite. La tectonique de l'Islande permet la régénération continue et extensive d'une mince croûte basaltique chaude. Les rhyolites y sont engendrées par la concentration des veines et ségrégations siliceuses originelles et par la fusion partielle de masses extrusives intermédiaires descendues profondément dans la croûte.

, . , 10–12% . , Shonkin Sag Laccolith Montanas. . , , . , . . ( 7% MgO 51,5% SiO2). (CDS) Shonkin Sag , , . . . . , , . . , Torfajokull , ., 18O , . , , , , « » («layered intrusions») Slaufrudalur, . , , Torfajokull. . . , , , .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号