首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Long-term water level variations in the Volga mouth area and the effect exerted on them by the river’s flow and the Caspian Sea’s level variations are considered. Quantitative relationships were identified between the mean annual water levels at different gages in the mouth and the sea level. A backwater component was isolated in the long-term variations in water level in the Volga mouth area. Relationships between the daily water levels in the mouth and the Caspian Sea’s level at fixed water flow in the delta apex are presented. The magnitude and the propagation distance of backwater from the sea into the delta are specified. The responses of the mouth areas of rivers emptying into the Caspian Sea to sea level variations in the past century are compared.  相似文献   

2.
The results of environmental monitoring of surface-water quality in the Lower Volga Basin are given. The results of regular observations are differentiated. Water pollution is assessed based on the criterion of seasonal occurrence of chemicals in water at gage sections classified by zonal principle. An integrated estimate demonstrates considerable variations within a year and an increase in the normal annual concentrations of some pollutants of both natural and anthropogenic origin.  相似文献   

3.
Demin  A. P.  Ismaiylov  G. Kh. 《Water Resources》2003,30(3):333-346
Data on water withdrawal and use in different economic branches in the Volga basin in 1970–2000 are analyzed. Time variations in the removed volumes of waste, mine, and drainage waters, as well as in their chemistry, are considered. Characteristics of water use in 2010 are forecasted based on predictions of the socioeconomic development of Russia and extrapolation of the tendencies established in the dynamics of the analyzed indices.  相似文献   

4.
The dynamics of meteorological elements in the Lena R. Basin is predicted for the XXI century under four IPCC global scenarios of SRES family, corresponding to specified scenarios of the economic, technological, political, and demographic development of the civilization. The obtained predictions are used to simulate variants of possible changes in water balance components in the Lena Basin up to the mid-XXI century. The calculation procedure is based on the use of land-surface model SWAP and a climate scenario generator MAGICC/SCENGEN.  相似文献   

5.
The results of studying the hydrological regime of the Caspian Sea and its basin climate in observation period 1945–2010 are generalized. The results of analysis of the regime of precipitation, air temperature in the Caspian Sea basin and its level, as well as Volga runoff in periods of Caspian Sea level rise and drop are given. The conformity in variations of the trends in Caspian Sea level its basin climate is demonstrated, and the direction of further studies is substantiated.  相似文献   

6.
The balance of a component contained in river water is considered taking into account its input with lateral inflow and decay in the aquatic environment. Random changes in lateral inflow causes fluctuations in the parameters of component input and decay. A stochastic equation of component balance is derived and used as the basis for the construction of an equation for the probability density of component concentration. The solution of this equation shows that the probability density follows lognormal law. This theoretical result is applicable to the analysis of time series of water salt composition components, including pH, alkalinity, chlorides, ammonia, iron, and aluminum. The applicability of the lognormal law is proved and distribution parameters are evaluated. The distributions of three components (pH, alkalinity, and chlorides) are found to split into two lognormal branches, describing high and low component concentrations. In the case of pH and alkalinity, this splitting is due to seasonal effects, while in the case of chlorides, it is caused by the difference between concentrations in the surface runoff at the early and final stages of snow melting and rainfalls. The application of the statistical distributions for probabilistic forecasting of extreme component concentrations is considered. The exceedance probability of standard limits of the components is considered. The use of exceedance probability in hydrochemical standardization is demonstrated.  相似文献   

7.
This study demonstrates the importance of the including and appropriately parameterizing peatlands and forestlands for basin‐scale integrated surface–subsurface models in the northern boreal forest, with particular emphasis on the Athabasca River Basin (ARB). With a long‐term water balance approach to the ARB, we investigate reasons why downstream mean annual stream flow rates are consistently higher than upstream, despite the subhumid water deficit conditions in the downstream regimes. A high‐resolution 3D variably saturated subsurface and surface water flow and evapotranspiration model of the ARB is constructed based on the bedrock and surficial geology and the spatial distribution of peatlands and their corresponding eco‐regions. Historical climate data were used to drive the model for calibration against 40‐year long‐term average surface flow and groundwater observations during the historic instrumental period. The simulation results demonstrate that at the basin‐scale, peatlands and forestlands can have a strong influence on the surface–subsurface hydrologic systems. In particular, peatlands in the midstream and downstream regimes of the ARB increase the water availability to the surface–subsurface water systems by reducing water loss through evapotranspiration. Based on the comparison of forestland evapotranspiration between observation and simulation, the overall spatial average evapotranspiration in downstream forestlands is larger than that in peatlands and thus the water contribution to the stream flow in downstream areas is relatively minor. Therefore, appropriate representation of peatlands and forestlands within the basin‐scale hydrologic model is critical to reproduce the water balance of the ARB.  相似文献   

8.

本文利用CSR发布的GRACE RL06时变重力场模型,结合两种水文模式、卫星测高、降雨和蒸散等多源数据,从多个角度综合系统地分析维多利亚湖流域2003-01-2017-06的陆地水储量变化.比较了正向建模方法和单一尺度因子对泄漏误差的改正效果,经对比采用正向建模方法在此流域效果更好.基于多源数据得出以下三点与此前研究不同的结论:(1)GRACE RL06版本数据探测到流域内的水储量在2003-01-2017-06呈增加趋势,球谐位系数和Mascon产品得到的变化速率分别为14.9 mm·a-1和16.7 mm·a-1,观测误差小于RL05版本的结果,RL05版本低估了流域水储量的变化速率;(2)2013-01-2016-02期间GRACE和测高探测到湖泊水量增长,而水文模式探测到流域内水储量减少,推测这一现象由大坝蓄水造成;(3)受El Niño事件影响,2016-03-2017-06流域降雨减少,流域水储量减少,GRACE球谐位系数和Mascon探测到的变化速率分别为-100.3 mm·a-1和-129.7 mm·a-1.本文结果表明卫星观测数据可为在缺乏直接观测数据的情况下分析人类活动和自然变化对区域水储量的影响提供一种可行的途径,这也为研究我国湖泊流域水储量变化提供参考.

  相似文献   

9.
Physically-based model SWAP, developed by the authors earlier and describing the processes of heat and water exchange between the land surface and the atmosphere was adapted for calculating the components of heat and water balance for the entire land surface of the globe. An information base for the model was prepared as a version of global dataset with one-degree spatial resolution for three-hour hydrometeorological data and land surface parameters. The dynamics of various parameters of heat and water regimes of the soil-vegetation (snow) cover-atmosphere system was calculated by using a new version of the land surface model SWAP with a three-hour time step from July 1, 1982, to December 31, 1995. Calculation results were compared with estimates available from the literature.  相似文献   

10.
The protection of the globally widespread lentic small water bodies (LSWB) must be based on detailed knowledge about their hydrological connectivity and water balance. The study aimed to identify and quantify water balance components as well as surface-groundwater interaction of two LSWB in a characteristic lowland region with a combination of different methods. This includes the collection of hydrological data and the use of bromide and water stable isotopes (δ2H and δ18O) as tracers. With their help, mixing models were established, and daily water balances were assessed. The results show a strong bidirectional interaction of both LSWB systems with shallow groundwater. Bromide and stable isotope tracers allowed for the identification of the most relevant in- and outflow sources and pathways. Thereby, isotope data revealed isotopic enrichment typical for open-water bodies and only minor precipitation inputs mainly relevant at the end of the dry season. Water balance calculations suggested accentuated seasonal dynamics that were strongly influenced by shallow groundwater, which represented large inputs into both LSWB. By that, different phases could be identified, with high inflow rates in winter and spring and decreasing fluxes in summer. In one LSWB, a drainage system was found to have a major impact next to the shallow groundwater interaction. The findings of this research provide detailed insights into the influence and importance of shallow groundwater for LSWB in lowland regions. This impacts the diffuse input of agricultural pollutants into these ecologically important landscape features.  相似文献   

11.
The paper deals with the isotope balance method applied to lakes, which can be assumed as being under steady-state conditions. It is shown that the long-term averages and non-normalized temperatures can be used in the balance equations. The applicability of the proposed approach was tested by the interpretation or reinterpretation of several known case studies (Chala, Titicaca, Waid, Burdur, Beysehir and Egridir lakes). An isotope study of a small artificial lake (1.2 · 106 m3) is presented and compared with whole-body tracing by K360 Co(CN)6. This artificial tracer does not appear useful for long-term tracing of surface waters.The water balance equation for each of the lakes considered was solved with the aid of the isotope balance equation of 18O. Applying the calculated components of the water balance, the isotope balance equation of deuterium was solved for finding the values of kinetic enrichment for deuterium. These values, which give the fit of the evaporation lines to the experimental data, do not agree with the values known from direct laboratory experiments, thus they have to be treated as apparent values, which may be useful for future field work.  相似文献   

12.
Because of the human exploitation and utilization of water resources in the Tarim Basin, the water resources consumption has changed from mainly natural ecosystem to artificial oasis ecosystem, and the environment has changed correspondingly. The basic changes are: desertification and oasis development coexist, both “the human being advance and the desert retreat” and “the desert advance and the human being retreat” coexist, but the latter is dominant. In the upper reaches, water volume drawing to irrigated agricultural areas has increased, artificial oases have been enlarging and moving from the deltas in the lower reaches of many rivers to the piedmont plains. In the middle and lower reaches of the Tarim River, the stream flow has decreased, old oases have declined, natural vegetations have been degenerating, desertification has been enlarging, and the environment has deteriorated. The transition regions, which consist of forestlands, grasslands and waters between the desert and the oases, have been decreasing continuously, their shelter function to the oases has been weakened, and the desert is threatening the oases seriously.  相似文献   

13.
Because of the human exploitation and utilization of water resources in the Tarim Basin,the water resources consumption has changed from mainly natural ecosystem to artificial oasisecosystem, and the environment has changed correspondingly. The basic changes are: desertifi-cation and oasis development coexist, both "the human being advance and the desert retreat" and"the desert advance and the human being retreat" coexist, but the latter is dominant. In the upperreaches, water volume drawing to irrigated agricultural areas has increased, artificial oases havebeen enlarging and moving from the deltas in the lower reaches of many rivers to the piedmontplains. In the middle and lower reaches of the Tarim River, the stream flow has decreased, old oa-ses have declined, natural vegetations have been degenerating, desertification has been enlarging,and the environment has deteriorated. The transition regions, which consist of forestlands, grass-lands and waters between the desert and the oases, have been decreasing continuously, theirshelter function to the oases has been weakened, and the desert is threatening the oases seri-ously.  相似文献   

14.

Because of the human exploitation and utilization of water resources in the Tarim Basin, the water resources consumption has changed from mainly natural ecosystem to artificial oasis ecosystem, and the environment has changed correspondingly. The basic changes are: desertification and oasis development coexist, both “the human being advance and the desert retreat” and “the desert advance and the human being retreat” coexist, but the latter is dominant. In the upper reaches, water volume drawing to irrigated agricultural areas has increased, artificial oases have been enlarging and moving from the deltas in the lower reaches of many rivers to the piedmont plains. In the middle and lower reaches of the Tarim River, the stream flow has decreased, old oases have declined, natural vegetations have been degenerating, desertification has been enlarging, and the environment has deteriorated. The transition regions, which consist of forestlands, grasslands and waters between the desert and the oases, have been decreasing continuously, their shelter function to the oases has been weakened, and the desert is threatening the oases seriously.

  相似文献   

15.
Abstract

Water balance studies with stable water isotopes have rarely been conducted in remote and tropical wetland areas. As such, little is known regarding the water balance and groundwater–surface water interaction in the Pantanal, one of the largest and most pristine wetlands in the world. We applied MINA TrêS, a water balance model utilizing stable water isotopes (δ18O, δ2H) and chloride (Cl-) to assess the dry-season hydrological processes controlling groundwater–surface water interactions and the water balance of six floodplain lakes in the northern Pantanal, Brazil. Qualitatively, all lakes exhibited similarity in hydrological controls. Quantitatively, they differed significantly due to morphological differences in controlling groundwater inflow and lake volume. Our approach is readily transferable to other remote and tropical wetland systems with minimal data input requirements, which is useful in regions with sparse hydrometric monitoring.
Editor Z.W. Kundzewicz  相似文献   

16.
太湖流域上游平原河网区水质空间差异与季节变化特征   总被引:2,自引:2,他引:2  
张涛  陈求稳  易齐涛  王敏  黄蔚  冯然然 《湖泊科学》2017,29(6):1300-1311
在太湖流域上游的宜溧—洮滆水系主要河道设置67个监测点,分别于2014年1月(冬季)、4月(春季)、8月(夏季)、11月(秋季)进行水质监测,采用多元统计方法分析了水质的空间差异性和季节性变化,并利用水质标识指数法对水环境质量进行评价.结果表明,宜溧—洮滆水系污染程度较严重,总氮(TN)、总磷(TP)和高锰酸盐指数(CODMn)浓度年均值分别为4.93、0.26和7.63 mg/L;单因素多元方差分析和聚类分析显示污染物浓度具有显著时空差异性,时间上冬、春季污染程度较高而夏、秋季较低,空间上无锡和常州氮、磷污染较为严重,宜兴和溧阳市有机污染程度较高;水质标识评价结果显示流域内水质基本为IV类或V类,其中TN、TP及CODMn是关键污染指标.  相似文献   

17.
淮河流域焦岗湖水质参数时空变化及影响因素   总被引:2,自引:1,他引:2  
焦岗湖是淮河左岸一个天然湖泊,集防洪、灌溉、养殖、旅游等多种功能于一体.利用焦岗湖4个季节水质监测数据,运用Kriging方法,分析焦岗湖水质参数的时空变化及影响因素.结果表明:由于受水文季节变化过程及人类活动等综合影响,焦岗湖水质参数在时间及空间上均存在一定差异.从时间变化来看,夏季透明度较低、秋季较高;溶解氧浓度在春、冬季显著高于夏、秋季;总氮、总磷浓度与高锰酸盐指数均表现为夏季最高、秋季最低.从空间变化来看,4个季节的透明度空间差异较为显著;溶解氧浓度在春、冬季空间分布较为均匀,夏季呈现中心高周围低的变化趋势,秋季则表现为西高东低;总磷浓度春季分布较为均匀,夏、秋及冬季则呈西高东低之势;高锰酸盐指数在春、秋季节呈现东高西低之势,夏季高浓度主要集中在湖区北部,冬季浓度变化不大.  相似文献   

18.
Long-term observational data (1992?C2009) on heavy metal (Cu, Zn, Pb, Cr, Ni, V, Mo, Co, Fe, and Mn) content of different links in the Ivankovo Reservoir ecosystem are used to consider the regularities in the distribution and behavior of heavy metals in the system anthropogenic pollution sources-reservoir and its drainage area, thus enabling the assessment of the pollution level of the Volga Source of water supply to Moscow.  相似文献   

19.
Land surface models are typically constrained by one or a few observed variables, while assuming that the internal water and energy partitioning is sensitive to those observed variables and realistic enough to simulate unobserved variables. To verify these assumptions, in situ soil climate analysis network (SCAN) observations in the Lower Mississippi Basin (2002–2008) are analysed to quantify water and energy budget components and they are compared to Community Land Model (CLM3·5) simulations. The local soil texture is identified as a major indicator for water storage characteristics and the Normalized Difference Vegetation Index shows potential as a drought indicator in summer months. Both observations and simulations indicate a regime where, except in some summer months, evapotranspiration controls soil moisture. CLM simulations with different soil texture assignments show discharge sensitivity to soil moisture, but almost no impact on evapotranspiration and other energy balance components. The observed and simulated water budgets show a similar partitioning. However, the SCAN observed water balance does not close because of precipitation measurement errors, unobserved irrigation, lack of specific storage change measurements and errors in the computed actual evapotranspiration. The simulated heat flux partitioning differs from that ‘observed’, with a larger (resp. smaller) fraction of net radiation being used by latent (resp. sensible) heat flux, and unobserved freeze and thaw events. The comparison between observations and model simulations suggests that a consistent observation collection for multiple variables would be needed to constrain and improve the full set of land surface variable estimates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
By taking the sum of annual precipitation and lateral water input (in which irrigation water withdrawal is the main component) for water availability, the Budyko hypothesis and Fu's formula derived from it was extended to the study of oases in the Tarim Basin, Northwest China. For both long‐term (multi‐year) and annual values on water balances in the 26 oases subregions, the extended Fu's formula was confirmed. Regional patterns on water balance on the 26 oases subregions were related to change in land‐use types due to increased area for irrigation. Moreover, an empirical formula for the parameter was established to reflect the influences of change in land use on water balance. The extended Budyko framework was employed to evaluate the impact of irrigation variability on annual water balance. According to the multi‐year mean timescale, variabilities in actual evapotranspiration in the oases were mainly controlled by variability in irrigation water withdrawal rather than potential evapotranspiration. The influences of variability on potential evapotranspiration became increasingly apparent together with increases in irrigation water withdrawal. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号