首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
 An improved concept of the best analogues method was used to reconstruct the Last Glacial Maximum (LGM) climate from a set of botanical records from the former Soviet Union and Mongolia. Terrestrial pollen and macrofossil taxa were grouped into broad classes – plant functional types (PFTs), defined by the ecological and climatic parameters used in the BIOME1 model. PFT scores were then calibrated in terms of modern climate using 1245 surface pollen spectra from Eurasia and North America. In contrast to individual taxa, which exhibit great variability and may not be present in the palaeoassemblages, even in suitable climates, PFTs are more characteristic of the vegetation types. The modified method thus allows climate reconstruction at time intervals with partial direct analogues of modern vegetation (e.g. the LGM). At 18 kBP, mean temperatures were 20–29 °C colder than today in winter and 5–11 °C colder in summer in European Russia and Ukraine. Sites from western Georgia show negative, but moderate temperature anomalies compared to today: 8–11 °C in January and 5–7 °C in July. LGM winters were 7–15 °C colder and summers were 1–7 °C colder in Siberia and Mongolia. Annual precipitation sums were 50–750 mm lower than today across northern Eurasia, suggesting a weakening of the Atlantic and Pacific influences. Reconstructed drought index shows much drier LGM conditions in northern and mid-latitude Russia, but similar to or slightly wetter than today around the Black Sea and in Mongolia, suggesting compensation of precipitation losses by lower-than-present evaporation. Received: 11 May 1998 / Accepted: 25 September 1998  相似文献   

2.
Results from multiple model simulations are used to understand the tropical sea surface temperature (SST) response to the reduced greenhouse gas concentrations and large continental ice sheets of the last glacial maximum (LGM). We present LGM simulations from the Paleoclimate Modelling Intercomparison Project, Phase 2 (PMIP2) and compare these simulations to proxy data collated and harmonized within the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface Project (MARGO). Five atmosphere–ocean coupled climate models (AOGCMs) and one coupled model of intermediate complexity have PMIP2 ocean results available for LGM. The models give a range of tropical (defined for this paper as 15°S–15°N) SST cooling of 1.0–2.4°C, comparable to the MARGO estimate of annual cooling of 1.7 ± 1°C. The models simulate greater SST cooling in the tropical Atlantic than tropical Pacific, but interbasin and intrabasin variations of cooling are much smaller than those found in the MARGO reconstruction. The simulated tropical coolings are relatively insensitive to season, a feature also present in the MARGO transferred-based estimates calculated from planktonic foraminiferal assemblages for the Indian and Pacific Oceans. These assemblages indicate seasonality in cooling in the Atlantic basin, with greater cooling in northern summer than northern winter, not captured by the model simulations. Biases in the simulations of the tropical upwelling and thermocline found in the preindustrial control simulations remain for the LGM simulations and are partly responsible for the more homogeneous spatial and temporal LGM tropical cooling simulated by the models. The PMIP2 LGM simulations give estimates for the climate sensitivity parameter of 0.67°–0.83°C per Wm−2, which translates to equilibrium climate sensitivity for doubling of atmospheric CO2 of 2.6–3.1°C.  相似文献   

3.
 The LMD AGCM was iteratively coupled to the global BIOME1 model in order to explore the role of vegetation-climate interactions in response to mid-Holocene (6000 y BP) orbital forcing. The sea-surface temperature and sea-ice distribution used were present-day and CO2 concentration was pre-industrial. The land surface was initially prescribed with present-day vegetation. Initial climate “anomalies” (differences between AGCM results for 6000 y BP and control) were used to drive BIOME1; the simulated vegetation was provided to a further AGCM run, and so on. Results after five iterations were compared to the initial results in order to identify vegetation feedbacks. These were centred on regions showing strong initial responses. The orbitally induced high-latitude summer warming, and the intensification and extension of Northern Hemisphere tropical monsoons, were both amplified by vegetation feedbacks. Vegetation feedbacks were smaller than the initial orbital effects for most regions and seasons, but in West Africa the summer precipitation increase more than doubled in response to changes in vegetation. In the last iteration, global tundra area was reduced by 25% and the southern limit of the Sahara desert was shifted 2.5 °N north (to 18 °N) relative to today. These results were compared with 6000 y BP observational data recording forest-tundra boundary changes in northern Eurasia and savana-desert boundary changes in northern Africa. Although the inclusion of vegetation feedbacks improved the qualitative agreement between the model results and the data, the simulated changes were still insufficient, perhaps due to the lack of ocean-surface feedbacks. Received: 5 December 1996 / Accepted: 16 June 1997  相似文献   

4.
 The influence of different vegetation distributions on the atmospheric circulation during the Last Glacial Maximum (LGM, 21 000 years before present) is investigated. The atmospheric general circulation model of the Bureau of Meteorology Research Center was run using a modern vegetation and in a second experiment with a vegetation reconstruction for the LGM. It is found that a change from conifer to desert and tundra causes an additional LGM cooling of 1–2 °C in Western Europe, up to −4 °C in North America and −6 °C in Siberia. An expansion of dryland vegetation causes an additional annual cooling of 1–2 °C for Australia and northern Africa. On the other hand, an increase of temperature (2 °C) is found in Alaska due to changes in circulation. In the equatorial region the LGM vegetation leads to an increased modelled temperature of 0.5–1.5 °C and decreased precipitation (30%) over land due to a reduction of the tropical rainforest, mainly in Indonesia, where the reduction of precipitation over land is associated with an increase of precipitation of 30% over the western Pacific. Received: 15 December 1999 / Accepted: 10 January 2001  相似文献   

5.
《Climate Dynamics》2008,30(7-8):887-907
Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load. The readers are requested to refer to the section “List of contributors” for the complete list of author affiliation details.  相似文献   

6.
Paleo-data suggest that East African mountain treelines underwent an altitudinal shift during the Last Glacial Maximum (LGM). Understanding the ecological and physiological processes underlying treeline response to such past climate change will help to improve forecasts of treeline change under future global warming. In spite of significant improvements in paleoclimatic reconstruction, the climatic conditions explaining this migration are still debated and important factors such as atmospheric CO2 concentration, the impact of lapse rate decreasing temperature along altitudinal gradients and rainfall modifications due to elevation have often been neglected or simplified. Here, we assess the effects of these different factors and estimate the influence of the most dominant factors controlling changes in past treeline position using a multi-proxy approach based on simulations from BIOME4, a coupled biogeography and biogeochemistry model, modified to account for the effect of elevation on vegetation, compared with pollen, and isotopic data. The results indicate a shift in mountain vegetation at the LGM was controlled by low pCO2 and low temperatures promoting species morphologically and physiologically better adapted to LGM conditions than many trees composing the forest belt limit. Our estimate that the LGM climate was cooler than today’s by ?4.5 °C (range: ?4.3 to ?4.6 °C) at the upper limit of the treeline, whereas at 831 m it was cooler by ?1.4 °C (range: ?2.6 to ?0.6 °C), suggests that a possible lapse rate modification strongly constrained the upper limit of treeline, which may limit its potential extension under future global warming.  相似文献   

7.
In order to investigate Last Glacial Maximum and future climate, we “precalibrate” the intermediate complexity model GENIE-1 by applying a rejection sampling approach to deterministic emulations of the model. We develop ~1,000 parameter sets which reproduce the main features of modern climate, but not precise observations. This allows a wide range of large-scale feedback response strengths which generally encompass the range of GCM behaviour. We build a deterministic emulator of climate sensitivity and quantify the contributions of atmospheric (±0.93°C, 1σ) vegetation (±0.32°C), ocean (±0.24°C) and sea–ice (±0.14°C) parameterisations to the total uncertainty. We then perform an LGM-constrained Bayesian calibration, incorporating data-driven priors and formally accounting for structural error. We estimate climate sensitivity as likely (66% confidence) to lie in the range 2.6–4.4°C, with a peak probability at 3.6°C. We estimate LGM cooling likely to lie in the range 5.3–7.5°C, with a peak probability at 6.2°C. In addition to estimates of global temperature change, we apply our ensembles to derive LGM and 2xCO2 probability distributions for land carbon storage, Atlantic overturning and sea–ice coverage. Notably, under 2xCO2 we calculate a probability of 37% that equilibrium terrestrial carbon storage is reduced from modern values, so the land sink has become a net source of atmospheric CO2.  相似文献   

8.
Changes in the water balance of Eurasia and northern Africa in response to insolation forcing at 6000 y BP simulated by five atmospheric general circulation models have been compared with observations of changes in lake status. All of the simulations show enhancement of the Asian summer monsoon and of the high pressure cells over the Pacific and Central Asia and the Middle East, causing wetter conditions in northern India and southern China and drier conditions along the Chinese coast and west of the monsoon core. All of the models show enhancement of the African monsoon, causing wetter conditions in the zone between ca 10–20 °N. Four of the models show conditions wetter than present in southern Europe and drier than present in northern Europe. Three of the models show conditions similar to present in the mid-latitude continental interior, while the remaining models show conditions somewhat drier than present. The extent and location of each of the simulated changes varies between the models, as does the mechanism producing these changes. The lake data confirm some features of the simulations, but indicate discrepancies between observed and simulated climates. For example, the data show: (1) conditions wetter than present in central Asia, from India to northern China and Mongolia, indicating that the simulated Asian monsoon expansion is too small; (2) conditions wetter than present between ca. 10–30 °N in Africa, indicating that the simulated African monsoon expansion is too small; (3) that northern Europe was drier, but the area of significantly drier conditions was more localized (around the Baltic) than shown in the simulations; (4) that southern Europe was wetter than present, apparently consistent with the simulations, but pollen data suggest that this reflects an increase in summer rainfall whereas the models show winter precipitation, and (5) that the mid-latitude continental interior was generally wetter than present. Received: 29 March 1996 / Accepted: 31 May 1996  相似文献   

9.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   

10.
We present seasonal precipitation reconstructions for European land areas (30°W to 40°E/30–71°N; given on a 0.5°×0.5° resolved grid) covering the period 1500–1900 together with gridded reanalysis from 1901 to 2000 (Mitchell and Jones 2005). Principal component regression techniques were applied to develop this dataset. A large variety of long instrumental precipitation series, precipitation indices based on documentary evidence and natural proxies (tree-ring chronologies, ice cores, corals and a speleothem) that are sensitive to precipitation signals were used as predictors. Transfer functions were derived over the 1901–1983 calibration period and applied to 1500–1900 in order to reconstruct the large-scale precipitation fields over Europe. The performance (quality estimation based on unresolved variance within the calibration period) of the reconstructions varies over centuries, seasons and space. Highest reconstructive skill was found for winter over central Europe and the Iberian Peninsula. Precipitation variability over the last half millennium reveals both large interannual and decadal fluctuations. Applying running correlations, we found major non-stationarities in the relation between large-scale circulation and regional precipitation. For several periods during the last 500 years, we identified key atmospheric modes for southern Spain/northern Morocco and central Europe as representations of two precipitation regimes. Using scaled composite analysis, we show that precipitation extremes over central Europe and southern Spain are linked to distinct pressure patterns. Due to its high spatial and temporal resolution, this dataset allows detailed studies of regional precipitation variability for all seasons, impact studies on different time and space scales, comparisons with high-resolution climate models as well as analysis of connections with regional temperature reconstructions. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
 Monthly sea surface temperature anomalies (SSTA) at near-global scale (60 °N–40 °S) and May to October rainfall amounts in West Africa (16 °N–5 °N; 16 °W–16 °E) are first used to investigate the seasonal and interannual evolutions of their relationship. It is shown that West African rainfall variability is associated with two types of oceanic changes: (1) a large-scale evolution involving the two largest SSTA leading eigenmodes (16% of the total variance with stronger loadings in the equatorial and southern oceans) related to the long-term (multiannual) component of rainfall variability mainly expressed in the Sudan–Sahel region; and (2) a regional and seasonally coupled evolution of the meridional thermal gradient in the tropical Atlantic due to the linear combination of the two largest SSTA modes in the Atlantic (11% with strong inverse loadings over the northern and southern tropics) which is associated with the interannual and quasi-decadal components of regional rainfall in West Africa. Linear regression and discriminant analyses provide evidence that the main July–September rainfall anomalies in Sudan–Sahel can be detected with rather good skills using the leading (April–June) or synchronous (July–September) values of the four main oceanic modes. In particular, the driest conditions over Sahel, more marked since the beginning of the 1970s, are specifically linked to the warm phases of the two global modes and to cold/warm anomalies in the northern/southern tropical Atlantic. Idealized but realistic SSTA patterns, obtained from some basic linear combinations of the four main oceanic modes appear sufficient to generate quickly (from mid-July to the end of August) significant West African rainfall anomalies in model experiments, consistent with the statistical results. The recent negative impact on West African rainfall exerted by the global oceanic forcing is primarily due to the generation of subsidence anomalies in the mid-troposphere over West Africa. When an idealized north to south SSTA gradient is added in the tropical Atlantic, strong north to south height gradients in the middle levels appear. These limit the northward excursion of the rainbelt in West Africa: the Sahelian area experiences drier conditions due to the additive effect (subsidence anomalies+latitudinal blocking) while over the Guinea regions wet conditions do not significantly increase, since the subsidence anomalies and the blocking effect act here in opposite ways. Received: 26 June 1997 / Accepted: 3 October 1997  相似文献   

12.
Conventional methods of palaeoclimate reconstruction provide estimates of climatic parameters using proxy data which have originated from individual sites. These reconstructions yield information on the local environment but only limited information on spatial scales that are required for model-data intercomparisons. We present here a new approach that connects these different scales by an upscaling of the local palaeoinformation together with a dynamically consistent spatial smoothing. A probabilistic data-based method for local reconstructions is combined with a dynamic constraint on the reconstructed climate parameter which stabilises the reconstruction on the target scale. The variational analysis leads to climatological fields being optimised with respect to the proxy data and to the prescribed dynamics in a statistically consistent way. This method allows a probabilistic approach of quality control of the palaeodata in terms of their spatial consistency and homogeneity and for an estimation of reconstruction errors. The method was applied to palaeobotanical data to reconstruct near-surface temperature fields constrained by simple linear dynamics. An approximate approach was used to estimate the magnitude of reconstruction errors in terms of standard deviations. Reconstructed January and July mean temperature of the early Eemian (∼ 125,000 years bp) have errors with a median value of about 1.8°C in January and about 1.1°C in July. Reconstructions across Europe show positive temperature anomalies for Scandinavia and near the East coast of the Baltic Sea. In contrast, early Eemian temperatures were apparently quite similar to those found today in Central Europe, as no drastic differences were reconstructed between the Eemian and modern (1961–1990) climate. This implies somewhat stronger temperature gradients in the Eemian than are observed today. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
J. R. Flenley 《Climatic change》1998,39(2-3):177-197
Vegetational history can help us to predict future environments by providing data for testing AGCMs, for indicating the vegetational response to rapid warming and changing CO2 concentrations, and for mathematical modelling of vegetation. Most of the data are palynological, and there are well over 100 pollen diagrams from tropical regions. Maps are presented showing summarized pollen diagrams from the lowlands of South-East Asia and the West Pacific, Tropical Latin America and Tropical Africa. In all these regions there is some evidence suggesting that at the LGM lowland forests were somewhat restricted in area and included montane elements. This is consistent with cooler and drier climate at the LGM. From the montane and lowland areas of these three regions, the pollen evidence is summarized in altitudinal diagrams. These suggest considerable depression of altitudinal zones at the LGM, suggesting temperatures c. 5–10°C cooler than now. These results conflict with earlier oxygen isotope data from marine foraminifera, but do not conflict with more recent oxygen isotope measurements from tropical corals. It is also suggested that altitudinal movements may be partly controlled by CO2 concentration and ultraviolet light.  相似文献   

14.
 Annual precipitation, July and January temperatures were reconstructed from a continuous Holocene pollen sequence from the Middle Atlas, Morocco, using the best modern analogues method. The reconstructions show a clear difference between the early and late Holocene: from ∼10 ka to ∼6.5 ka the climate was drier and warmer than during the period since 6.5 ka. The average value of annual precipitation was ∼870 mm until 6.5 ka, then rose to ∼940 mm. Between 10 ka and 6.5 ka January and July temperatures were about 4 °C higher than the present. Both temperatures show a marked decrease between 7 ka and 6 ka. After 6.5 ka July and January temperatures fluctuated between 21 and 23 °C, and 2.5 and 5 °C respectively. January temperatures show a period of intermediate values (∼3.5 °C) between 4 ka and 5.5 ka. The reconstructed climate values generally match palaeolimnological data from the same core, which show five intervals of low lake level during the Holocene. They are also consistent with regional-scale COHMAP simulated palaeoclimate that shows contrasting patterns of rainfall variation between the northwesternmost part of Africa and the intertropical band. Received: 7 July 1997 / Accepted: 28 May 1998  相似文献   

15.
Wyoming provides more fossil fuels to the remainder of the United States than any other state or country, and its citizens remain skeptical of anthropogenic influences on their climate. However, much of the state including Yellowstone National Park and the headwaters of several major river systems, may have already been affected by rising temperatures. This paper examines the historic climate record from Wyoming in the context of ∼14,000-year temperature reconstructions based on fossil pollen data. The analysis shows that 24 of 30 U.S. Historical Climatology Network records from the state show an increase in the frequency of unusually warm years since 1978. Statewide temperatures have included 15 years (50%) from 1978 to 2007 that were greater than 1σ above the mean annual temperature for 1895–1978. The frequent warm years coincide with a reduction in the frequency of extremely low (<−20°C) January temperatures, and are not well explained by factors such as solar irradiance and the Pacific Decadal Oscillation. Linear regressions require inclusion of atmospheric greenhouse gas concentrations to explain the multi-decadal temperature trends. The observed warming is large in Yellowstone National Park where 21 years (70%) from 1978 to 2007 were greater than 1σ above the 1895–1978 mean; the deviation from the mean (>1°C) is greater than any time in the past 6,000 years. Recent temperatures have become as high as those experienced from 11,000 to 6,000 years ago when summer insolation was >6% higher than today and when regional ecosystems experienced frequent severe disturbances.  相似文献   

16.
This is the second part of the authors’ analysis on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (20C3M) experiment and 1% per year CO 2 increase experiment (to doubling) (1pctto2x) of phase 3 of the Coupled Model Inter-comparison Project (CMIP3). The study focuses on the potential changes of July–August temperature extremes over China. The pattern correlation coefficients of the simulated temperature with the observations are 0.6–0.9, which are higher than the results for precipitation. However, most models have cold bias compared to observation, with a larger cold bias over western China (>5°C) than over eastern China (<2°C). The multi-model ensemble (MME) exhibits a significant increase of temperature under the 1pctto2x scenario. The amplitude of the MME warming shows a northwest–southeast decreasing gradient. The warming spread among the models (~1°C– 2°C) is less than MME warming (~2°C–4°C), indicating a relatively robust temperature change under CO 2 doubling. Further analysis of Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) simulations suggests that the warming pattern may be related to heat transport by summer monsoons. The contrast of cloud effects also has contributions. The different vertical structures of warming over northwestern China and southeastern China may be attributed to the different natures of vertical circulations. The deep, moist convection over southeastern China is an effective mechanism for "transporting" the warming upward, leading to more upper-level warming. In northwestern China, the warming is more surface-orientated, possibly due to the shallow, dry convection.  相似文献   

17.
The total extent of the atmospheric impacts associated to the aerosol black carbon (BC) emissions from South America is not completed described. This work presents results of BC monitored during three scientific expeditions (2002, 2003 and 2004) on board of a Brazilian oceanographic vessel Ary Rongel that covered the South–West Atlantic coast between 22–62°S. This latitudinal band encloses major urban regions of South America and the outflow region of the SACZ (South Atlantic Convergent Zone), which is an important mechanism of advective transport of heat, moisture, minor gases and aerosols from the South America continental land to the Southern Atlantic Ocean. Our results showed that aerosol BC enhanced concentrations from urban/industrial origin can be transported to the South–West Atlantic Ocean due to the migration of sub-polar fronts that frequently reach tropical/subtropical regions. Despite the decrease of aerosol BC concentrations southwards (from ∼1,200 ng m−3 at latitude 22°S to ∼10 ng m−3 at latitude 62°S), several observed peak events were attributed to regional urban activities. Most of such events could be explained by the use of air mass back trajectories analysis. In addition, a global model simulation is presented (Goddard Institute for Space Studies – GISS GCM BC simulation) to explore the origins of aerosol BC in the South–West Atlantic. The model allowed isolating the biomass emissions from South America and Africa and industrial (non-biomass) pollution from other regions of the globe. This model suggests that the apportionment of about half of the aerosol BC at the South–West Atlantic may derive from South American biomass burning.  相似文献   

18.
Anthropogenic climate change will continue long after anthropogenic CO2 emissions cease. Atmospheric CO2, global warming and ocean circulation will approach equilibrium on the millennial timescale, whereas thermal expansion of the ocean, ice sheet melt and their contributions to sea level rise are unlikely to be complete. Atmospheric CO2 in year 3000 depends non-linearly on the total amount of CO2 emitted and is very likely to exceed the present level of ∼380 ppmv. CO2 is doubled for ∼2500 GtC emitted, quadrupled if all ∼5000 GtC of conventional fossil fuel resources are emitted, and increases by a factor of ∼32 if a further 20,000 GtC of exotic fossil fuel resources are emitted. Global warming in year 3000 will also depend on climate sensitivity to doubling CO2, which is most probably ∼3 C but highly uncertain. Thermal expansion will contribute 0.5–2 m to millennial sea level rise for each doubling of CO2. The Greenland ice sheet could melt completely within the millennium under > 8×CO2, adding a further ∼7 m to sea level. The rate of melt depends on the magnitude of forcing above a regional warming threshold of 1–3 C. The West Antarctic ice sheet could be threatened by 4–10 C local warming, and its potential contribution to millennial sea level rise exceeds current maximum estimates of ∼1 m. The fate of the ocean thermohaline circulation may depend on the rate as well as the magnitude of forcing.  相似文献   

19.
Summary  Intra-seasonal fluctuations of summer convection over southern Africa are studied through principal components (PC) analysis. Pentad (5 day) satellite outgoing long-wave radiation (OLR) departures are used to characterise the space and time scales of terrestrial cloudiness in the domain 10–35° S, 10–40° E. Areas of intra-seasonal convective influence are analysed according to spatial pattern and corresponding temporal character. Eight distinct geographic domains are identified, four tropical and four sub-tropical. The three most significant modes occur over southern Tanzania, Namibia, and Zambia, and refer to pulsing of: the Indian NE monsoon, surface heating in the western desert, and the zonal ITCZ, respectively. Temporal characteristics vary widely but an underlying near-monthly rhythm is detected. The variety of modes suggests that convective weather systems respond to external forcing (wave trains) and internal dynamics, to produce intra-seasonal fluctuations over southern Africa. Received February 19, 1998 Revised July 10, 1998  相似文献   

20.
Climate model simulations available from the PMIP1, PMIP2 and CMIP (IPCC-AR4) intercomparison projects for past and future climate change simulations are examined in terms of polar temperature changes in comparison to global temperature changes and with respect to pre-industrial reference simulations. For the mid-Holocene (MH, 6,000 years ago), the models are forced by changes in the Earth’s orbital parameters. The MH PMIP1 atmosphere-only simulations conducted with sea surface temperatures fixed to modern conditions show no MH consistent response for the poles, whereas the new PMIP2 coupled atmosphere–ocean climate models systematically simulate a significant MH warming both for Greenland (but smaller than ice-core based estimates) and Antarctica (consistent with the range of ice-core based range). In both PMIP1 and PMIP2, the MH annual mean changes in global temperature are negligible, consistent with the MH orbital forcing. The simulated last glacial maximum (LGM, 21,000 years ago) to pre-industrial change in global mean temperature ranges between 3 and 7°C in PMIP1 and PMIP2 model runs, similar to the range of temperature change expected from a quadrupling of atmospheric CO2 concentrations in the CMIP simulations. Both LGM and future climate simulations are associated with a polar amplification of climate change. The range of glacial polar amplification in Greenland is strongly dependent on the ice sheet elevation changes prescribed to the climate models. All PMIP2 simulations systematically underestimate the reconstructed glacial–interglacial Greenland temperature change, while some of the simulations do capture the reconstructed glacial–interglacial Antarctic temperature change. Uncertainties in the prescribed central ice cap elevation cannot account for the temperature change underestimation by climate models. The variety of climate model sensitivities enables the exploration of the relative changes in polar temperature with respect to changes in global temperatures. Simulated changes of polar temperatures are strongly related to changes in simulated global temperatures for both future and LGM climates, confirming that ice-core-based reconstructions provide quantitative insights on global climate changes. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号