首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Striking characteristics of the western Neoproterozoic belt of Cameroon (NFBC) are the large volume of granitoids and crustal-scale shear zones. New structural and geochronological data from this area are provided to put constraints on the tectonic evolution of this segment of the belt and to make further correlations between major shear zones exposed on both sides of the Atlantic Ocean.

Three different complexes have been identified in the study area: the migmatitic complex of Foumbot (MCF), the metagranitoid complex of Bangwa (BC), and the Batié pluton (BP). The MCF was intruded by the BC, while the BP cuts through the BC. U–Pb zircon dating of metaleucogranite and metagranodiorite of the BC yielded concordant to subconcordant ages of 638 ± 2 Ma and 637 ± 5 Ma, respectively. A concordant U–Pb zircon age of 602 ± 1.4 Ma has been obtained from porphyrogranite of the BP. These ages are interpreted as emplacement ages. Continuous deformation from magmatic to solid-state flow along the BP margins and the (sub)parallelism of the steep solid-state foliation in the BP margins with the foliation in the surrounding BC and MFC suggest synkinematic emplacement of the BP along crustal-scale NNE to ENE-trending strike–slip shear zones. Subhorizontal foliations in migmatitic-gneiss xenoliths found in the BC suggest that the major transcurrent motion was preceded by thrusting.

The new data confirm previous assumptions that the western NFBC is equivalent to parts of the Borborema province of Brazil. There are geochronological correlations between the studied (meta)granitoids and Brasiliano pre- to syn-transcurrent granitoids of the Borborema province.  相似文献   


3.
4.
5.
6.
7.
8.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
《Geoarchaeology》2004,19(4):381-381
The original article to which this Erratum refers was published in Geoarchaeology 19 (1) 2004, 1–19 DOI 10.1002/gea.10101 .  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号