共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper summarises the development and principal results of fifty years of research on aerosols in the marine atmosphere at Mace Head Atmospheric Research Station on the west coast of Ireland. It concentrates on the sources, physico-chemical properties, number and mass concentrations, size range, volatility and chemical composition of aerosols in different air masses. It also examines optical properties of the aerosols and their long-range transport. 相似文献
2.
3.
Surface measurements of cloud condensation nuclei (CCN) number concentration (cm−3) are presented for unmodified marine air and for polluted air at Mace Head, for the years 1994 and 1995. The CCN number concentration active at 0.5% supersaturation is found to be approximately log-normal for marine and polluted air at the site. Values of geometric mean, median and arithmetic mean of CCN number concentration (cm−3) for marine air are in the range 124–135, 140–150 and 130–157 for the two years of data. Analysis of CCN number concentration for high wind speed, U, up to 20 m s−1 show enhanced CCN production for U in excess of about 10–12 m s−1. Approximately 7% increase in CCN per 1 m s−1 increase in wind speed is found, up to 17 m s−1. A relationship of the form log10CCN=a+bU is obtained for the periods March 1994 and January, February 1995 for marine air yielding values a of 1.70; 1.90 and b of 0.035 for both periods. 相似文献
4.
Marko Vana Mikael Ehn Tuukka Petj Henri Vuollekoski Pasi Aalto Gerrit de Leeuw Darius Ceburnis Colin D. O'Dowd Markku Kulmala 《Atmospheric Research》2008,90(2-4):278-ICNAA07
Coastal nucleation events and behavior of cluster ions were characterized through the measurements of air ion mobility distributions at the Mace Head research station on the west coast of Ireland in 2006. We measured concentrations of cluster ions and charged aerosol particles in the size range of 0.34–40 nm. These measurements allow us to characterize freshly nucleated charged particles with diameters smaller than 3 nm. The analysis shows that bursts of intermediate ions (1.6–7 nm) are a frequent phenomenon in the marine coastal environment. Intermediate ion concentrations were generally close to zero, but during some nucleation episodes the concentrations increased to several hundreds per cm3. Nucleation events occurred during most of the measurement days. We classified all days into one of seven classes according to the occurrence and type of new particle formation. Nucleation events were observed during 207 days in 2006, most prominently in the spring and summer months. Rain-induced events, in turn, were observed during 132 days. Particle formation and growth events mostly coincided with the presence of low tide. Also small cluster ions (0.34–1.6 nm) were characterized. Average concentrations of small ions were 440 cm− 3 for the negative ions and 423 cm− 3 for the positive ions. Average mean mobilities of small ions were 1.86 cm2V− 1s− 1 and 1.49 cm2V− 1s− 1 for the negative and positive polarities, respectively. Concentrations of small ions were observed to be strongly dependent on the variations of meteorological parameters including wind speed and direction. 相似文献
5.
G. Salisbury P. S. Monks S. Bauguitte B. J. Bandy S. A. Penkett 《Journal of Atmospheric Chemistry》2002,41(2):163-187
Measurements of the sum of peroxy radicals [HO2 + RO2],NOx (NO + NO2) and NOy (the sum of oxidisednitrogen species) made at Mace Head, on the Atlantic coast of Ireland in summer 1996 and spring 1997 are presented. Together with a suite of ancillary measurements, including the photolysis frequencies of O3 O(1D)(j(O1D)) and NO2 (j(NO2)), the measured peroxy radicals are used to calculate meandailyozone tendency (defined as the difference of the in-situphotochemical ozone production and loss rates); these values are compared with values derived from the photochemical stationary state (PSS) expression. Although the correlation between the two sets of values is good, the PSS values are found to be significantly larger than those derived from the peroxy radical measurements, on average, in line with previous published work. Possible sources of error in these calculations are discussed in detail. The data are further divided up into five wind sectors, according to the instantaneous wind direction measured at the research station. Calculation of mean ozone tendencies by wind sector shows that ozone productivity was higher during spring (April–May) 1997 than during summer (July–August) 1996across all airmasses, suggesting that tropospheric photochemistry plays an important role in the widely-reported spring ozone maximum in the Northern Hemisphere. Ozone tendencies were close to zero for the relatively unpolluted south-west, west and north-west wind sectors in the summer campaign, whereas ozone productivity was greatest in the polluted south-east sector for both campaigns. Daytime weighted average ozone tendencies were +(0.3± 0.1) ppbv h–1 for summer 1996 and +(1.0± 0.5) ppbvh–1 for spring 1997. These figures reflect the higher mixing ratios of ozone precursors in spring overall, as well as the higher proportion of polluted air masses from the south-east arriving at the site during the spring campaign. The ozone compensation point, where photochemical ozone destruction and production processes are in balance, is calculated to be ca. 14 pptv NO for both campaigns. 相似文献
6.
Analyses of cloud condensation nuclei (CCN) number concentrations (cm− 3) measured at the Mace Head Atmospheric Research Station, near Carna, County Galway, Ireland, using a DH Associates Model M1 static thermal diffusion cloud chamber over the period from March 1994 to September 2002 are presented in this work. Air masses are defined as being ‘marine’ if they originate from a wind direction of 180–300° and ‘continental’ air masses are defined as originating from a wind direction of 45–135°. Air masses without such filtering were classified as ‘undefined’ air masses. Air masses were found to be dominated by marine sector air, re-affirming Mace Head as a baseline atmospheric research station. CCN levels for specific air masses at Mace Head were found to be comparable with earlier studies both at Mace Head and elsewhere. Monthly averaged clean marine (wind direction of 180–300° and black carbon absorption coefficient < 1.425 Mm− 1) CCN and marine CCN varied between 15–247 cm− 3 and 54–670 cm− 3, respectively. As expected, significant increases in number concentration were found in continentally sourced CCN over that of marine CCN and were found to follow a log-normal distribution significantly tighter than that of clean marine air masses. No significant trend was found for CCN over the 9-year period. While polluted continental air masses showed a slight increase in CCN concentrations over the winter months, most likely due to increased fuel usage and a lower mixed boundary layer, the dominance of marine sector air arriving at Mace Head, which generally consists of background CCN concentrations, reduced seasonal differences for polluted air. Marine air showed a distinct seasonal pattern, with elevated values occurring over the spring and summer seasons. This is thought to be due to enhanced biogenic aerosol production as a result of phytoplankton bloom activity in the North Atlantic. 相似文献
7.
R. G. Derwent N. Carslaw P. G. Simmonds M. Bassford S. O'Doherty D. B. Ryall M. J. Pilling A. C. Lewis J. B. McQuaid 《Journal of Atmospheric Chemistry》1999,34(2):185-205
During the EASE/OXICOA campaign of the NERC ACSOE programme, trichloroethylene and a wide range of man-made halocarbons and radiatively-active trace gases were monitored with high precision and high frequency throughout July 1996 at Mace Head on the Atlantic Ocean coast of Ireland. Trichloroethylene concentrations in concert with many other trace gases became elevated as regionally-polluted and photochemically-aged air masses reached Mace Head. However, as the anticyclonic air masses retreated during 19 and 20 July, trace gas concentrations remained elevated for a significant period. During this 2–4 day period, trichloroethylene concentrations decayed significantly, though the concentrations of the other more chemically-inert trace gases did not. A detailed interpretation of this behaviour using a Lagrangian dispersion model has allowed the estimation of average and peak OH radical concentrations of 3 and 9×106 molecule cm-3, respectively, during the travel from the source areas in the U.K. and the low countries out to Mace Head. Using a simple box model, the available Mace Head measurements, when combined into a detailed chemical mechanism, generated OH radical concentrations which peaked at 7×106 molecule cm-3, in close agreement with the estimates based on trichloroethylene decay. 相似文献
8.
S. G. Tsyro 《Russian Meteorology and Hydrology》2008,33(5):300-309
This paper provides performance evaluation of the EMEP (Cooperative Programme for the Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) model, formulated in [1], and presents model calculation results. A satisfactory agreement is found between calculated and observed PM10 and PM2.5 concentrations (i.e., particulate matter with diameters smaller than 10 and 2.5 μm) and their chemical composition for different parts of Europe for the years 2001–2004. The model manages to reproduce observed regional gradients of background PM10 and PM2.5, with spatial correlations being 0.70 and 0.80, respectively, while the temporal correlation coefficients between modeled and measured daily PM vary mostly between 0.4 and 0.8 at EMEP sites. The agreement between calculated and observed aerosol number concentrations is worse than for mass concentrations. Model calculated PM10 and PM2.5 concentrations and chemical composition in Europe for the year 2004 are presented, as well as their interannual variations in the period 2000–2004. Further, contributions of different sources to PM10 and PM2.5 are estimated. Model results show that in 2004, background PM10 and PM2.5 exceeded EU critical levels and WHO recommended guidelines in a number of European regions. They also show that the transboundary transport contributes considerably to PM pollution in the European countries. 相似文献
9.
István Major Brigitta Gyökös Marianna Túri István Futó Ágnes Filep András Hoffer Enikő Furu A. J. Timothy Jull Mihály Molnár 《Journal of Atmospheric Chemistry》2018,75(1):85-96
Comprehensive atmospheric studies have demonstrated that carbonaceous particles are one of the main components of atmospheric aerosols over Europe. The aim of our study was to establish an automated elemental analyser interfaced to a stable isotope mass spectrometer (EA-IRMS) method at the Hertelendi Laboratory of Environmental Studies (HEKAL), as a suitable method of quantification of total carbon mass in individual PM2.5 aerosol samples. Total carbon (TC) mass and simultaneous stable isotopic ratios were determined for both test standard and genuine aerosol samples. Finally, the results were compared to the ones obtained independently by an alternative sealed tube combustion method developed previously at HEKAL. The TC recovery tests of standard material prepared by the sealed tube method confirmed at least a carbon recovery yield of 92% for a broad range of carbon mass (100–2000 μg). The stable isotopic results confirmed that sealed tube method is reproducible and suitable to be used as a reference to verify our new EA-IRMS method. The EA-IRMS TC measurements of genuine aerosols gave on average 3% higher carbon recovery yield, relative to the uncorrected results of the sealed tube method. The comparison of the stable isotopic results by the two methods for aerosols also showed minimal differences. Consequently, the possibility of simultaneous TC and stable isotopic analyses makes the EA-IRMS method a very attractive alternative for continuous measurement of aerosols, with an accuracy and reliability similar to other commercial devices. 相似文献
10.
11.
潮州沿海大气气溶胶无机离子浓度分布与气象要素的相关分析 总被引:4,自引:0,他引:4
根据2004年广东潮州沿海地区的气溶胶浓度观测资料,分析潮州沿海大气气溶胶无机离子浓度分布特征及气象要素对其的影响。结果表明:离子浓度季节性差异明显,总离子浓度呈现春夏季低、秋冬季高的特征,系由当地不同季节降雨量和风向分布不同造成的;气溶胶无机成分与海水近似,表明海盐是当地气溶胶的重要来源之一,但Cl-与Na+不一致,表明可能存在除海盐颗粒以外的异地气溶胶长距离输送;总离子浓度随采样点高度增加而降低,随采样时海陆风变化而变化;阳离子浓度日际变化不明显,阴离子浓度易受天气条件影响。 相似文献
12.
P. G. Simmonds R. G. Derwent A. J. Manning P. J. Fraser P. B. Krummel S. O'Doherty R. G. Prinn D. M. Cunnold B. R. Miller H. J. Wang D. B. Ryall L. W. Porter R. F. Weiss P. K. Salameh 《Journal of Atmospheric Chemistry》2004,47(3):243-269
In situ AGAGE GC-MS measurements of methyl bromide (CH3Br) and methyl chloride (CH3Cl) at Mace Head, Ireland and Cape Grim, Tasmania (1998–2001) reveal a complex pattern of sources. At Mace Head both gases
have well-defined seasonal cycles with similar average annual decreases of 3.0% yr−1 (CH3Br) and 2.6% yr−1 (CH3Cl), and mean northern hemisphere baseline mole fractions of 10.37 ± 0.05 ppt and 535.7 ± 2.2 ppt, respectively. We have used
a Lagrangian dispersion model and local meteorological data to segregate the Mace Head observations into different source
regions, and interpret the results in terms of the known sources and sinks of these two key halocarbons. At Cape Grim CH3Br and CH3Cl also show annual decreases in their baseline mixing ratios of 2.5% yr−1 and 1.5% yr−1, respectively. Mean baseline mole fractions were 7.94 ± 0.03 ppt (CH3Br) and 541.3 ± 1.1 ppt (CH3Cl). Although CH3Cl has astrong seasonal cycle there is no well-defined seasonal cycle in the Cape Grim CH3Br record. The fact that both gases are steadily decreasing in the atmosphere at both locations implies that a change has
occurred which is affecting a common, major source of both gases (possibly biomass burning) and/or their major sink process
(destruction by hydroxyl radical). 相似文献
13.
V. N. Golubev 《Russian Meteorology and Hydrology》2015,40(12):787-793
Considered is the process of ice nucleation in the atmosphere as a result of heterogeneous condensation of water vapor in surface inhomogeneities of aerosol particles and of subsequent heterogeneous crystallization of supercooled water accumulation. It is revealed that the size, structure, and composition of aerosol particles determine the thermal regime of crystallization. 相似文献
14.
为了更好地研究沙尘气溶胶起沙和输送特征,2010年4—5月,在民勤周边沙地利用EZ LIDAR ALS300&ALS450型激光雷达和 GRIMM 180型颗粒物采样器进行了大气气溶胶的外场连续观测,取得了晴天、浮尘、扬沙和沙尘暴天气条件下沙尘气溶胶总后向散射垂直剖面图和PM10、PM2.5、PM1.0质量浓度采样资料,其中包含“0424”特强沙尘暴过程资料。结果表明:春季民勤近地层大气中沙尘气溶胶浓度较高,且随气象要素的变化很大;在整个观测期内,PM10、PM2.5、PM1.0的平均质量浓度分别为202.3、57.4 μg/m3、16.7 μg/m3。在不同天气条件下,PM10、PM2.5、PM1.0质量浓度的变化有很好的相关性,但变化趋势有所不同。在沙尘暴天气条件下,PM10的日平均质量浓度高达2469.1μg/m3,是背景天气条件下PM10日平均质量浓度的100多倍,是浮尘天气条件下PM10日平均质量浓度的8倍,是扬沙天气条件下PM10日平均质量浓度的2倍。PM2.5在沙尘暴天气下日平均质量浓度为460.3 μg/m3,是背景天气条件下PM2.5日平均质量浓度的45倍,是浮尘天气条件下PM2.5日平均质量浓度的6倍,是扬沙天气条件下PM2.5日平均质量浓度的1.4倍。PM1.0在沙尘暴天气条件下的日平均浓度为92.7 μg/m3,是背景天气条件下PM1.0日平均浓度的13倍,是浮尘天气条件下PM1.0日平均浓度的7倍,是扬沙天气条件下PM1.0日平均浓度的1.3倍。可见,风速增大时沙尘粒子浓度的增加对粒子粒径是有选择的,小粒子比重随沙尘浓度增加而相对减小,大粒子比重随沙尘浓度增加而相对增多;通过对“0424”特强沙尘暴过程的研究表明,一次沙尘暴过程往往包括沙尘暴、扬沙和浮尘天气中的两种类型;通过对激光雷达数据分析发现,在强沙尘暴发生过程当中,民勤沙地发生了非常严重的风蚀起沙现象。 相似文献
15.
P. G. Simmonds S. Seuring G. Nickless R. G. Derwent 《Journal of Atmospheric Chemistry》1997,28(1-3):45-59
Three independent methods have been used to sort the ozone, carbonmonoxide, and other radiatively important trace gases measured at Mace Head,Ireland, and thereby distinguish clean air masses transported over the NorthAtlantic from the more polluted air masses which have recently travelledfrom the European continent. Over the period April 1987–June 1995 theNorthern Hemisphere surface ozone baseline concentrations exhibited a meanconcentration of 34.8 ppb, with a small positive trend (+0.19 ppbyr-1), while the corresponding trend in air originating fromthe polluted European areas was negative (–0.39 ppbyr-1). Carbon monoxide measurements from March 1990 toDecember 1994 showed negative trends for both the unpolluted (–0.17ppb yr-1) and polluted data (–13.6 ppbyr-1). Overall the continent of Europe was shown to be a smallnet sink of 2.6 ppb for all occasions when European air was transported tothe North Atlantic. 相似文献
16.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols. 相似文献
17.
18.
Summary
Atmospheric backscattering from aerosol particulates has been measured over the Atlantic at 10.6 μm wavelength with an airborne,
coherent heterodyne, lidar, and corresponding air mass back trajectories have been calculated. These back trajectories (usually
extended up to 10 days prior to the backscatter measurement) have shown very diverse origins for the air parcels at different
altitudes. In many cases it has been possible to attribute the observed levels of scattering to these origins over oceanic,
arctic, continental, industrial etc. regions. This is illustrated by 6 flight records: out of Ascension Island in the South
Atlantic; over the Azores in the mid North Atlantic; over the UK and the North Sea; and in the Arctic along 71° North. In
each of these regions the profiles of backscatter versus altitude show highly variable features; remarkably different origins
for air masses at different altitudes are evident from the corresponding back trajectory analyses. It is thus possible for
the first time to present probable explanations for the different levels of scattering observed at different altitudes.
Received July 14, 2000 Revised May 14, 2001 相似文献
19.
利用静止卫星MTSAT反演大气气溶胶光学厚度 总被引:9,自引:1,他引:9
卫星遥感是获取气溶胶光学特性的重要手段,利用静止卫星可见光通道资料反演气溶胶光学厚度(AOD)的算法使用日本静止气象卫星MTSAT可见光通道资料反演了2008年5月中国地区陆地上的气溶胶光学厚度,将得到的结果分别与AERONET站点的地面观测值进行比较,得到了较好的线性相关关系,再将其与相应的MODIS气溶胶光学厚度产品进行比较,也得到了较为一致的分布,表明MTSAT反演的气溶胶光学厚度产品可以反映大气气溶胶光学厚度的日变化信息。最后对这种反演算法的误差来源进行了分析。 相似文献
20.
Summary This study investigated the impact of atmospheric aerosols on surface ultraviolet (UV) irradiance at Gwangju, Korea (35°13′N,
126°50′E). Data analyzed included surface UV irradiance measured by UV radiometers from June 1998 to April 2001 and the aerosol
optical depth (AOD) in the visible range determined from a rotating shadow-band radiometer (RSR). The radiation amplification
factor (RAF) of ozone for UV-B (280–315 nm) at Gwangju was 1.32–1.62. Values of the RAF of aerosols (RAFAOD) for UV-A and UV-B were 0.18–0.20 and 0.22–0.26, respectively.
Authors’ addresses: Jeong Eun Kim, Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science
and Technology (GIST) and Korea Meteorological Administration (KMA); Seong Yoon Ryu, Advanced Environmental Monitoring Research
Center (ADEMRC), Gwangju Institute of Science and Technology (GIST) and Division of Metrology, Korea Research Institute of
Standards and Science (KRISS); Young Joon Kim, Advanced Environmental Monitoring Research Center (ADEMRC) Gwangju Institute
of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea. 相似文献