首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Process-based interpretation of tracer tests in carbonate aquifers   总被引:6,自引:0,他引:6  
Birk S  Geyer T  Liedl R  Sauter M 《Ground water》2005,43(3):381-388
A tracer test in a carbonate aquifer is analyzed using the method of moments and two analytical advection-dispersion models (ADMs) as well as a numerical model. The numerical model is a coupled continuum-pipe flow and transport model that accounts for two different flow components in karstified carbonate aquifers, i.e., rapid and often turbulent conduit flow and Darcian flow in the fissured porous rock. All techniques employed provide reasonable fits to the tracer breakthrough curve (TBC) measured at a spring. The resulting parameter estimates are compared to investigate how each conceptual model of flow and transport processes that forms the basis of the analyses affects the interpretation of the tracer test. Numerical modeling results suggest that the method of moments and the analytical ADMs tend to overestimate the conduit volume because part of the water discharged at the spring is wrongly attributed to the conduit system if flow in the fissured porous rock is ignored. In addition, numerical modeling suggests that mixing of the two flow components accounts for part of the dispersion apparent in the measured TBC, while the remaining part can be attributed to Taylor dispersion. These processes, however, cannot reasonably explain the tail of the TBC. Instead, retention in immobile-fluid regions as included in a nonequilibrium ADM provides a possible explanation.  相似文献   

2.
Analysis of the morphology of dissolution-bedform assemblages and hydraulically-transported sediments found within conduits in carbonate aquifers in North America and the British Isles has allowed the hydraulic conditions under which conduit flows occur to be established. Mean values of flow velocity, boundary-shear stress, conduit Reynolds number, conduit Froude number, boundary friction factor, boundary roughness and flow power have been calculated. The values obtained are in agreement with other evidence in the conduits and are comparable to those obtained from other, similar, hydraulic systems.  相似文献   

3.
White WB 《Ground water》2012,50(2):180-186
The very diverse types of ground‐water behavior in carbonate terrains can be classified by relating the flow type to a particular hydrogeologic environment each exhibiting a characteristic cave morphology. The ground water may move by diffuse flow, by retarded flow, or by free flow. Diffuse flow occurs in less soluble rocks such as extremely shaley limestones or crystalline dolomites. Integrated conduits are rare. Caves tend to be small, irregular, and often little more than solutionally widened joints. Retarded flows occur in artesian environments and in situations where unfavorable stratigraphy forces ground water to be confined to relatively thin beds. Network cave patterns are characteristic since hydrodynamic forces are damped by the external controls. Solution occurs along many available joints. Free flowing aquifers are those in which solution has developed a subsurface drainage system logically regarded as an underground extension of surface streams. These streams may have fully developed surface tributaries as well as recharge from sinkholes and general infiltration. Characteristic cave patterns are those of integrated conduit systems which are often truncated into linear, angulate, and branchwork caves. Free Flow aquifers may be further subdivided into Open aquifers lying beneath karst plains and Capped aquifers in which significant parts of the drainage net lie beneath an insoluble cap rock. Other geologic factors such as structure, detailed lithology, relief, and locations of major streams, control the details of cave morphology and orientation of the drainage network.  相似文献   

4.
A sustained increase in spring discharges was monitored after the 2016 Central Italy seismic sequence in the fractured carbonate aquifer of Valnerina–Sibillini Mts. The groundwater surplus recorded between August 2016 and November 2017 was determined to be between 400 and 500 × 106 m3. In fractured aquifers, the post-seismic rise in spring discharges is generally attributed to an increase in bulk permeability caused by the fracture cleaning effect, which is induced by pore pressure propagation. In the studied aquifers, the large amount of additional discharge cannot only be attributed to the enhanced permeability, which was evaluated to be less than 20% after each main seismic event. A detailed analysis of the spring discharge hydrographs and of the water level at five gauging stations was carried out to determine the possible causes of this sudden increase in groundwater outflow. Taking into account the geological and structural framework, a conceptual model of a basin-in-series has been adopted to describe the complex hydrogeological setting, where the thrusts and extensional faults have clearly influenced the groundwater flow directions before and after the seismic sequence. The prevalent portion of the total post-seismic discharge surplus not explained by the increase in permeability has been attributed to changes in the hydraulic gradient that caused seismogenic fault rupture and the disruption in the upgradient sector of the aquifer. The additional flow calculated through the breach of the pre-existing hydrostructural barrier corresponds to approximately 470 × 106 m3. This value is consistent with the total discharge increase measured in the whole study area, validating the proposed conceptual model. Consequently, a shift in the piezometric divide of the hydrogeological system has been induced, causing a potentially permanent change that lowers the discharge amount of the eastern springs.  相似文献   

5.
Herrera P  Valocchi A 《Ground water》2006,44(6):803-813
The transport of contaminants in aquifers is usually represented by a convection-dispersion equation. There are several well-known problems of oscillation and artificial dispersion that affect the numerical solution of this equation. For example, several studies have shown that standard treatment of the cross-dispersion terms always leads to a negative concentration. It is also well known that the numerical solution of the convective term is affected by spurious oscillations or substantial numerical dispersion. These difficulties are especially significant for solute transport in nonuniform flow in heterogeneous aquifers. For the case of coupled reactive-transport models, even small negative concentration values can become amplified through nonlinear reaction source/sink terms and thus result in physically erroneous and unstable results. This paper includes a brief discussion about how nonpositive concentrations arise from numerical solution of the convection and cross-dispersion terms. We demonstrate the effectiveness of directional splitting with one-dimensional flux limiters for the convection term. Also, a new numerical scheme for the dispersion term that preserves positivity is presented. The results of the proposed convection scheme and the solution given by the new method to compute dispersion are compared with standard numerical methods as used in MT3DMS.  相似文献   

6.
Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit properties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess the resolution of the cross-well seismic method for detecting conduits and to determine whether these conduits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct and cross variograms along the vertical wells capture nested structures associated with periodic carbonate units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different depths. These units are thin conduits developed in the first well and, at about the middle of the interwell separation region, these conduits connect to thicker flow units that are intercepted by the second well. In addition, a high impedance zone (low porosity) at a depth of about 275 m, after being converted to ELAN porosity, is characterized as a more confined low porosity structure. This continuous zone corresponds to a permeability barrier in the carbonate aquifer that separates the three connected conduits observed in the cokriging image. In the zones above and below this permeability barrier, the water production is very high, which agrees with water well observations at the Port Mayaca aquifer.  相似文献   

7.
For a large part of the year, the forested catchments in the Keuper formation of east Luxembourg produce more direct run-off on a storm basis than paired cultivated catchments. The occurrence of shrinkage cracks, their pronounced opening and closing, and the occurrence of natural pipes in the forested environment play a major role in explaining this phenomenon. The effect of land use on storm run-off is studied in relation to that found for lithology in the same area.  相似文献   

8.
Concentrations of major ions and the δ13C composition of dissolved inorganic carbon in groundwater and submarine groundwater discharges in the area between Siracusa and Ragusa provinces, southeastern Sicily, representing coastal carbonate aquifers, are presented and discussed. Most of groundwater analysed belongs to calcium bicarbonate type, in agreement with the geological nature of carbonate host rocks. Carbonate groundwater acquires, besides the dissolution of carbonate minerals, dissolved carbon (and the relative isotopic composition) from the atmosphere and from soil biological activity. In fact, δ13C values and total dissolved inorganic carbon contents show that both these sources contribute to carbon dissolved species in the waters studied. Finally, mixing with seawater in the second main factor of groundwater mineralization Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The coastal plain of the Río de la Plata constitutes a large wetland which develops on the right margin of the river estuary. Anthropic activities such as intensive exploitation of groundwater carried out in the vicinity of the wetland can modify the natural hydrological regime. The aim of this work is to asses the effects of intensive aquifer exploitation in coastal wetlands using hydrogeological models. Such models allow to evaluate changes in the environmental conditions of wetland at regional level. The hydrogeological model exposed in this work shows how the intensive groundwater exploitation affects the wetland area, generating important variations both in the groundwater flows and in the salinity of the groundwater. Identification of these modifications to the environment is important to generate guidelines leading to minimize these affectations.  相似文献   

10.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   

11.
An exact, closed-form analytical solution is developed for calculating ground water transit times within Dupuit-type flow systems. The solution applies to steady-state, saturated flow through an unconfined, horizontal aquifer recharged by surface infiltration and discharging to a downgradient fixed-head boundary. The upgradient boundary can represent, using the same equation, a no-flow boundary or a fixed head. The approach is unique for calculating travel times because it makes no a priori assumptions regarding the limit of the water table rise with respect to the minimum saturated aquifer thickness. The computed travel times are verified against a numerical model, and examples are provided, which show that the predicted travel times can be on the order of nine times longer relative to existing analytical solutions.  相似文献   

12.
More than one-half of the world's population is dependent on ground water for everyday uses such as drinking, cooking, and hygiene. In fact, it is the most extracted natural resource in the world. As a result of growing populations and expanding economies, many aquifers today are being depleted while others are being contaminated. Notwithstanding the world's considerable reliance on this resource, ground water resources have long received only secondary attention as compared to surface water, especially among legislatures and policymakers. Today, while there are hundreds of treaties governing transboundary rivers and lakes, there is only one international agreement that directly addresses a transboundary aquifer. Given that many of the aquifers on which humanity so heavily relies cross international borders, there is a considerable gap in the sound management, allocation, and protection of such resources. In order to prevent future disputes over transboundary aquifers and to maximize the beneficial use of this resource, international law must be clarified as it applies to transboundary ground water resources. Moreover, it must be defined with a firm basis in sound scientific understanding. In this paper we offer six conceptual models is which ground water resources can have transboudary consequences. The models are intended to help in assessing the applicability and scientific soundness of existing and proposed rules governing transboundary ground water resources. In addition, we consider the development of international law as it applies to ground water resources and make recommendations based on the models and principles of hydrogeology. The objective is the development of clear, logical, and science-based norms of state conducts as they relate to aquifers that traverse political boundaries.  相似文献   

13.
Caves deliver freshwater from coastal carbonate landscapes to estuaries but how these caves form and grow remains poorly understood. Models suggest fresh and salt water mixing drives dissolution in eogenetic limestone, but have rarely been validated through sampling of mixing waters. Here we assess controls on carbonate mineral saturation states using new and legacy geochemical data that were collected in vertical profiles through three cenotes and one borehole in the Yucatan Peninsula. Results suggest saturation states are primarily controlled by carbon fluxes rather than mixing. Undersaturation predicted by mixing models that rely on idealized end members is diminished or eliminated when end members are collected from above and below actual mixing zones. Undersaturation due to mixing is limited by CO2 degassing from fresh water in karst windows, which results in calcite supersaturation. With respect to saline groundwater, controls on capacity for mixing dissolution were more varied. Oxidation of organic carbon increased pCO2 of saline groundwater in caves (pCO2 = 10–2.06 to 10–0.96 atm) relative to matrix porosity (10–2.39 atm) and local seawater (10–3.12 atm). The impact of increased pCO2 on saturation state, however, depended on the geochemical composition of the saline water and the magnitude of organic carbon oxidation. Carbonate undersaturation due to mixing was limited where gypsum dissolution (Cenote Angelita) or sulfate reduction (Cenote Calica) increased concentrations of common ions (Ca2+ or HCO3?, respectively). Maximum undersaturation was found to occur in mixtures including saline water that had ion concentrations and ratios similar to seawater, but with moderately elevated pCO2 (Cenote Eden). Undersaturation, however, was dominated by the initial undersaturation of the saline end member, mixing was irrelevant. Our results add to a growing body of literature that suggests oxidation of organic carbon, and not mixing dissolution, is the dominant control on cave formation and enlargement in coastal eogenetic karst aquifers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Sierra de Segura (Betic Cordillera), with a total area of over 3000 km2, is the source of the two principal rivers in southern Spain, the Guadalquivir and the Segura. Due to the orographic effect of these mountains, precipitations are considerably more abundant than in nearby lowland areas, where the climate is semi-arid. Sierra de Segura is constituted of Mesozoic and Cenozoic sedimentary rocks, among which there are thick limestone–dolomitic formations which have given rise to extensive outcrops of permeable materials. In geomorphological terms, there is a large plateau intensively karstified that constitutes the main recharge area. Discharge takes place via a large number of springs, of which the 50 most important add up to a mean spring flow of about 13,500 l/s. The active geochemical processes in aquifers of Sierra de Segura, with their corresponding time sequence, are: dissolution of CO2, dissolution of calcite, incongruent dissolution of dolomite, dedolomitization, exsolution of CO2, and precipitation of calcite. More evolved water has higher temperature, magnesium content and Mg/Ca ratio; therefore, these parameters can be utilised as indicators of the degree of hydrochemical evolution. In addition, a good correlation between water temperature and magnesium concentration (or Mg/Ca ratio) indicates that an increase in temperature accelerates the kinetics of the dissolution of dolomite. Finally, the distribution of the temperatures in the vadose zone, determined by atmospheric thermal gradient, implies an apparent stratification of the predominant hydrochemical processes and of the groundwater physical and chemical characteristics.  相似文献   

15.
The Boussinesq equation appears as the zeroth-order term in the shallow water flow expansion of the non-linear equation describing the flow of fluid in an unconfined aquifer. One-dimensional models based on the Boussinesq equation have been used to analyse tide-induced water table fluctuations in coastal aquifers. Previous analytical solutions for a sloping beach are based on the perturbation parameter, N=αcotβ (in which β is the beach slope, α is the amplitude parameter and is the shallow water parameter) and are limited to tan−1(α)βπ/2. In this paper, a new higher-order solution to the non-linear boundary value problem is derived. The results demonstrate the significant influence of the higher-order components and beach slope on the water table fluctuations. The relative difference between the linear solution and the present solution increases as and α increase, and reaches 7% of the linear solution.  相似文献   

16.
The sedimentary sequences containing lithologic units with low permeability represent hydrogeologic systems, which, as of now, have been little studied despite their diffusion worldwide. A hydrogeologic study, aimed to assess the main factors controlling the groundwater flow dynamics in such systems and their hydraulic interactions with nearby carbonate aquifers, has been carried out in Longano (Isernia, Southern Italy). The analysis of the hydraulic heads, combined with the regimes of the springs and the electric conductivity of the groundwater, mainly reflect vertical and lateral heterogeneities of the media in terms of hydraulic properties. In particular, the flow system is controlled by lateral heterogeneities, which characterize a surficial horizon made up of clayey colluviums and talus deposits, separated from the deeper saturated, fissured bedrock. One‐to‐ten relationships in hydraulic heads, monitored in piezometers crossing the fissured media, further uphold the crucial role played by the lateral contrasts of permeability in controlling the flow dynamics. On the whole, significant interactions with the nearby carbonate hydrostructure take place. Nevertheless, the heterogeneities of the siliciclastic succession and surficial horizon, coupled with the compartmentalization of the carbonate system, lead to a complex hydrogeological scenario. In a wider perspective, this study gives information of utmost importance in order to improve the implementation of mathematical models and configuration of tapping works within these heterogeneous and complex settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Physical barriers are widely used to control seawater intrusion (SWI). Amongst different kinds of physical barriers, mixed physical barriers (MPBs) are shown to be an effective approach to prevent SWI. However, the system may hinder the discharge of fresh groundwater and the removal of residual saltwater trapped in the inland aquifers of MPBs. Herein, using the validated numerical model, for the first time, we investigated the dynamics of residual saltwater and groundwater discharge after the installation of MPBs. For examining the applicability of MPB and its response to structural variations and hydraulic gradient, the comparison with traditional physical barriers and sensitivity analysis was also carried out. The MPB increased the mixing area of freshwater and saltwater at the beginning of the removal process, resulting in the reduction of the saltwater wedge length (RL) by 74.6% and the removal of total salt mass (RM) by 62.6% within the 4% of the total removal time. Meanwhile, the groundwater discharge (Q') rose rapidly after a sharp decline from 100% to 40% in the first stage. As the residual saltwater wedge was retreated, the mixing intensity and removal efficiency decreased substantially in the second stage. Similarly, Q' raised with a declining rate at this stage. The removal efficiency was positively correlated with wall depth and hydraulic gradient and there were optimal distance of the middle spacing and height of lower dam to reach the highest efficiency. The groundwater discharge reduced monotonously with the increase of dam height and wall depth as well as the decrease of barrier spacing and hydraulic gradient. Under certain conditions, the efficiency of MPB in removing residual saltwater could be 40%–100% and 0%–56% higher than that of traditional subsurface dam and cutoff wall, respectively. The laboratory scale conclusions provide valuable physical insight for the real field applications regarding dynamic mechanism and regularity. These findings will always help decision makers choose proper engineering measures and protect groundwater resources in coastal areas.  相似文献   

18.
The mineralogical and elemental variations across the main shear zone of the Saltville thrust at Sharp Gap in Knoxville, Tennessee, U.S.A., were studied in a suite of deformed and undefromed carbonate rock samples using X-ray diffraction and electron microprobe methods. An examination of the samples for deformation effects at mesoscopic scale and under the optical microscope reveals familiar cataclastic deformation features including foliated cataclasites and microbreccias occurring in a well-defined, 1–2 m wide zone of intense deformation, plus evidence of hydrofracturing and extensive syndeformational pressure solution. There exists a clear correlation between the observed cataclastic deformation and mineral and elemental distribution which we interpret to result from a deformation-induced dolomite to calcite transformation in the shear zone. The transformation has resulted in removal of Mg from the shear zone, selective deposition of calcite as an intergranular cement in cataclasite/microbreccia units and a relative increase in the concentration of detrital quartz and feldspars.The compositional difference between the shear zone and wall rocks is explained in connection with cataclastic deformation features in terms of a model in which a dual pressure-solution/cataclastic flow mechanism leads to a gradual cementation-hardening of segments of the shear zone. Instabilities could occur via permeability reduction and increased pore pressure within these segments. Hydrofracturing of the hardened segments along with high strain rate reordering of the shear zone materials reset the ruptured zone back to the dual deformation mechanism regime. As a long-term effect, the compositional transformation of the shear zone is expected to prolong periods of creep and cause smaller coseismic stress drops since under the imposed conditions calcite is more ductile and soluble than dolomite.  相似文献   

19.
Understanding the temporal and spatial variability of water sources within a basin is vital to our ability to interpret hydrologic controls on biogeochemical processes and to manage water resources. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water did not conform to the commonly observed “elevation effect,” which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2–3 weeks for isotopic analysis for 1 year. Our results confirmed the lack of elevational variation of surface water isotopes within this leeward basin. Although we find elevational variation in precipitation in the eastern portion of the watershed, this elevation effect is counteracted by rainout with distance from the Pacific coast. In addition, we found significant variation in surface water isotope values between catchments underlain predominantly by basalt or sandstone. The degree of separation was strongest during the summer when low flows reflect deeper groundwater sources. This indicates that baseflow within streams drained by each lithology is being supplied from two distinctly separate water sources. In addition, the flow of the Marys River is dominated by water originating from the sandstone water source, particularly during the low‐flow summer months. We interpreted that the difference in water source results from sandstone catchments having highly fractured geology or locally tipping to the east facilitating cross‐basin water exchange from the windward to the leeward side of the Coast Range. Our results challenge topographic derived watershed boundaries in permeable sedimentary rocks; highlighting the overwhelming importance of underlying geology.  相似文献   

20.
The constant-head pumping tests are usually employed to determine the aquifer parameters and they can be performed in fully or partially penetrating wells. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The mathematical model describing the aquifer response to a constant-head test performed in a fully penetrating well can be easily solved by the conventional integral transform technique under the uniform Dirichlet-type condition along the rim of wellbore. However, the boundary condition for a test well with partial penetration should be considered as a mixed-type condition. This mixed boundary value problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the Laplace and finite Fourier transforms in conjunction with the triple series equations method. This approach provides analytical results for the drawdown in a partially penetrating well for arbitrary location of the well screen in a finite thickness aquifer. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号