首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

2.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   

3.
Abstract— The Portales Valley meteorite provides an opportunity to investigate and compare the microstructure in Fe‐Ni metal of the metallic particles in the chondritic portion and in the metal veins. The low‐temperature phase decomposition of Fe‐Ni metal was investigated using scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The microstructure is formed as the Portales Valley meteorite cooled from high temperatures and includes the outer taenite rim, the cloudy zone, clear taenite, and martensite. Martensite in turn decomposes into a fine admixture of fcc rods in a bcc matrix. The width of the island phase of the cloudy zone in the metal particles of the chondritic portion and the metal veins can be used to estimate a low‐temperature cooling rate. The microstructural evidence indicates that the chondritic portions and the metal veins in the Portales Valley meteorite cooled together as a mixture with a cooling rate of roughly 6.5 K/Ma.  相似文献   

4.
Abstract— NWA 2526 is a coarse‐grained, achondritic rock dominated by equigranular grains of polysynthetically twinned enstatite (?85 vol%) with frequent 120° triple junctions and ?10–15 vol% of kamacite + terrestrial weathering products. All other phases including troilite, daubreelite, schreibersite, and silica‐normative melt areas make up 相似文献   

5.
Abstract— A shower of meteorite fragments fell at ~0730 h local time on 1998 June 13 near the town of Portales, New Mexico. Thus far, 51 pieces of the Portales Valley (H6) meteorite have been recovered. This meteorite has an unusually large number of metallic veins. Some of these veins are also unusually thick, having widths on the order of centimeters. These wide veins have fine Widmanstätten structure, which is the first time it has been seen in an ordinary chondrite. This structure indicates the metallic veins and the host chondrite cooled slowly. These veins appear to have been produced by shock-metamorphic processes, which we infer produced a >20 km diameter impact crater on an H-chondrite planetesimal.  相似文献   

6.
A new meteorite find, named Khatyrka, was recovered from eastern Siberia as a result of a search for naturally occurring quasicrystals. The meteorite occurs as clastic grains within postglacial clay‐rich layers along the banks of a small stream in the Koryak Mountains, Chukotka Autonomous Okrug of far eastern Russia. Some of the grains are clearly chondritic and contain Type IA porphyritic olivine chondrules enclosed in matrices that have the characteristic platy olivine texture, matrix olivine composition, and mineralogy (olivine, pentlandite, nickel‐rich iron‐nickel metal, nepheline, and calcic pyroxene [diopside‐hedenbergite solid solution]) of oxidized‐subgroup CV3 chondrites. A few grains are fine‐grained spinel‐rich calcium‐aluminum‐rich inclusions with mineral oxygen isotopic compositions again typical of such objects in CV3 chondrites. The chondritic and CAI grains contain small fragments of metallic copper‐aluminum‐iron alloys that include the quasicrystalline phase icosahedrite. One grain is an achondritic intergrowth of Cu‐Al metal alloys and forsteritic olivine ± diopsidic pyroxene, both of which have meteoritic (CV3‐like) oxygen isotopic compositions. Finally, some grains consist almost entirely of metallic alloys of aluminum + copper ± iron. The Cu‐Al‐Fe metal alloys and the alloy‐bearing achondrite clast are interpreted to be an accretionary component of what otherwise is a fairly normal CV3 (oxidized) chondrite. This association of CV3 chondritic grains with metallic copper‐aluminum alloys makes Khatyrka a unique meteorite, perhaps best described as a complex CV3 (ox) breccia.  相似文献   

7.
Abstract— An ~4 × 9 × 12-mm concentration of metal (dubbed RC1) situated between silicate melt and a relict chondritic clast in the Rose City H5 impact-melt breccia is compositionally heterogeneous. Approximately 65 wt% of RC1 is enriched in the refractory siderophile elements, Os and Ir, by 30–40% relative to bulk H chondrite metal; ~20 wt% is depleted in these elements by 31–35%; and 15 wt% is depleted by a considerably greater amount (75%). Common and volatile siderophile elements are essentially unfractionated in all three regions; W is fractionated to only a moderate degree. The compositions of the different regions of RC1 are similar to those of previously analyzed metal nodules and veins in shocked but unmelted ordinary chondrites. All of these objects probably formed by a complex process involving vaporization of chondritic material, rapidly followed by oxidation of W to form volatile oxides, fractional condensation of refractory siderophile elements, transport of the residual vapor (containing common and volatile siderophile elements as well as W oxide) and condensation of this vapor in fractures and voids or on metallic liquid substrates. The common occurrence of vugs in shock-heated chondrites and the pervasiveness of vaporization effects recorded in metal masses and veins underscores the important role of superheating in the formation of impact breccias.  相似文献   

8.
Abstract– Queen Alexandra Range (QUE) 94204, an enstatite achondrite, is a coarse‐grained, highly recrystallized, chondrule‐free and unbrecciated rock dominated (about 70 vol%) by anhedral, equigranular crystals of orthoenstatite of nearly endmember composition (Fs0.1–0.4, Wo0.3–0.4) with interstitial plagioclase, kamacite, and troilite. Abundance of approximately 120° triple junctions and the close association of metal–sulfide and plagioclase‐rich melts indicate that QUE 94204 has undergone limited partial melting with inefficient melt extraction. Mineral chemistry indicates a high degree of thermal metamorphism. Kamacite in QUE 94204 contains between 2.09 and 2.55 wt% Si, similar to highly metamorphosed EL chondrites. Plagioclase has between 4.31 and 6.66 wt% CaO, higher than other E chondrites but closer in composition to plagioclase from metamorphosed EL chondrites. QUE 94204 troilite contains up to 2.55 wt% Ti, consistent with extensive thermal metamorphism of an E chondrite‐like precursor. Results presented in this study indicate that QUE 94204 is the result of low degree, (about 5–20 vol%, probably toward the lower end of this range) partial melting of an E chondrite protolith. Textural and chemical evidence suggests that during the metamorphism of QUE 94204, melts formed first at the Fe,Ni‐FeS cotectic near approximately 900 °C, followed by plagioclase‐pyroxene silicate partial melts near approximately 1100 °C. Neither the Fe,Ni‐FeS nor the plagioclase‐pyroxene melts were efficiently segregated or extracted. QUE 94204 belongs to a grouplet of similar “primitive enstatite achondrites” that are analogous to the acapulcoites‐lodranites, but that have resulted from the partial melting of an E chondrite‐like protolith.  相似文献   

9.
Abstract– Six chondritic clasts in the Cumberland Falls polymict breccia were examined: four texturally resemble ordinary chondrites (OCs) and two are impact melt breccias containing shocked OC clasts adjacent to a melt matrix. The six chondritic clasts are probably remnants of a single OC projectile that was heterogeneously shocked when it collided with the Cumberland Falls host. Mayo Belwa is the first known aubrite impact melt breccia. It contains coarse enstatite grains exhibiting mosaic extinction; the enstatite grains are surrounded by a melt matrix composed of 3–16 μm‐size euhedral and subhedral enstatite grains embedded in sodic plagioclase. Numerous vugs, ranging from a few micrometers to a few millimeters in size, constitute ~5 vol% of the meteorite. They occur nearly exclusively within the Mayo Belwa matrix; literature data show that some vugs are lined with bundles of acicular grains of the amphibole fluor‐richterite. This phase has been reported previously in only two other enstatite meteorites (Abee and St. Sauveur), both of which are EH‐chondrite impact melt breccias. It seems likely that in Mayo Belwa, volatiles were vaporized during an impact event and formed bubbles in the melt. As the melt solidified, the bubbles became cavities; plagioclase and fluor‐richterite crystallized at the margins of these cavities via reaction of the melt with the vapor.  相似文献   

10.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   

11.
Abstract— Bencubbin is an unclassified meteorite breccia which consists mainly of host silicate (~40 vol.%) and host metal (~60%) components. Rare (< 1%) ordinary chondrite clasts and a dark xenolith (formerly called a carbonaceous chondrite clast) are also found. A petrologic study of the host silicates shows that they have textures, modes, mineralogy and bulk compositions that are essentially the same as that of barred olivine (BO) chondrules, and they are considered to be BO chondritic material. Bulk compositions of individual host silicate clasts are identical and differ only in their textures which are a continuum from coarsely barred, to finely barred, to feathery microcrystalline; these result from differing cooling rates. The host silicates differ from average BO chondrules only in being angular clasts rather than fluid droplet-shaped objects, and in being larger in size (up to 1 cm) than most chondrules; but large angular to droplet-shaped chondrules occur in many chondrites. Bencubbin host metallic FeNi clasts have a positive Ni-Co trend, which coincides with that of a calculated equilibrium nebular condensation path. This appears to indicate a chondritic, rather than impact, origin for this component as well. The rare ordinary chondrite clast and dark xenolith also contain FeNi metal with compositions similar to that of the host metal. Two scenarios are offered for the origin of the Bencubbin breccia. One is that the Bencubbin components are chondritic and were produced in the solar nebula. Later brecciation, reaggregation and minor melting of the chondritic material resulted in it becoming a monomict chondritic breccia. The alternative scenario is that the Bencubbin components formed as a result of major impact melting on a chondritic parent body; the silicate fragments were formed from an impact-induced lava flow and are analogous to the spinifex-textured rocks characteristic of terrestrial komatiites. Both scenarios have difficulties, but the petrologic, chemical and isotopic data are more consistent with Bencubbin being a brecciated chondrite. Bencubbin has a number of important chemical and isotopic characteristics in common with the major components in the CR (Renazzo-type) chondrites and the unique ALH85085 chondrite, which suggests that their major components may be related. These include: (1) Mafic silicates that are similarly Mg-rich and formed in similar reducing environments. (2) Similarly low volatiles; TiO2, Al2O3 and Cr2O3 contents are also similar. (3) Similar metallic FeNi compositions that sharply differ from those in other chondrites. (4) Remarkable enrichments in 15N. (5) Similar oxygen isotopic compositions that lie on the same mixing line. Thus, the major components of the Bencubbin breccia are highly similar to those of the ALH85085 and CR chondrites and they may have all formed in the same isotopic reservoir, under similar conditions, in the CR region of the solar nebula.  相似文献   

12.
Abstract– Larkman Nunatak (LAR) 06299 is a vesicular LL chondrite impact melt breccia that cooled rapidly (0.1–0.3 °C s?1) during crystallization. Ar‐Ar data from the literature indicate that the impact event that formed this rock occurred approximately 1 Ga ago. About 30 vol% of the meteorite consists of a melt matrix containing faceted and intergrown mafic silicate grains (mainly 4–11 μm size olivine phenocrysts) partially to completely surrounded by 2–20 μm size patches of plagioclase. Suspended in the melt are 30–370 μm size ellipsoidal to spheroidal metal‐sulfide nodules (several hundred per thin section), many connected to 8–600 μm size ellipsoidal to spheroidal vesicles. Most of the metal‐sulfide nodules contain a large oblate metallic Fe‐Ni bleb at one end of the nodule. For approximately 90% of the nodules, the metal blebs are aligned on the same side of the nodules; for approximately 80% of the nodules that are adjacent to vesicles, the vesicles are attached to the opposite end of the nodules from the oblate metal blebs. Most of the oblate metal blebs themselves are flattened in a direction perpendicular to the long axis of the nodule/vesicle. These features result from alignment in the gravitational field on the LL parent asteroid, making LAR 06299 the first known chondrite to indicate gravitational direction. Using reasonable estimates of the cooling rate, viscosity of the metal‐sulfide melt, and asteroid density, as well as the observed sizes of constituent phases in LAR 06299, we obtain a lower limit of approximately 1.5 km for the radius of the LAR 06299 parent body. The body was probably substantially larger.  相似文献   

13.
Here, the petrological features of numerous primitive achondrites and highly equilibrated chondrites are evaluated to review and expand upon our knowledge of the chondrite–achondrite transition, and primitive achondrites in general. A thermodynamic model for the initial silicate melting temperature and progressive melting for nearly the entire known range of oxidation states is provided, which can be expressed as Tm = 0.035Fa2?3.51Fa + 1109 (in °C, where Fa is the proportion of fayalite in olivine). This model is then used to frame a discussion of textural and mineralogical evolution of stony meteorites with increasing temperature. We suggest that the metamorphic petrology of these meteorites should be based on diffusive equilibration among the silicate minerals, and as such, the chondrite–achondrite transition should be defined by the initial point of silicate melting, not by metal–troilite melting. Evidence of silicate melting is preserved by a distinctive texture of interconnected interstitial plagioclase ± pyroxene networks among rounded olivine and/or pyroxene (depending on ?O2), which pseudomorph the former silicate melt network. Indirectly, the presence of exsolution lamellae in augite in slowly cooled achondrites also implies that silicate melting occurred because of the high temperatures required, and because silicate melt enhances diffusion. A metamorphic facies series is defined: the Plagioclase Facies is equivalent to petrologic types 5 and 6, the Sub‐calcic Augite Facies is bounded at lower temperatures by the initiation of silicate melting and at higher temperatures by the appearance of pigeonite, which marks the transition to the Pigeonite Facies.  相似文献   

14.
Abstract— Mössbauer absorption areas corresponding to 57Fe in olivine, pyroxene, troilite, and the metallic phase in ordinary chondrites are shown to exhibit certain systematic behaviors. H chondrites occupy 2 distinct regions on the plot of metallic phase absorption area versus silicate absorption area, while L/LL chondrites fall in a separate region. Similar separation is also observed when pyroxene absorption area is plotted against olivine absorption area. The one‐dimensional plot for the ratio of olivine area to pyroxene area separates L and LL chondrites. Based on these systematics, a newly fallen meteorite at Jodhpur, India is suggested to be an LL chondrite.  相似文献   

15.
16.
Abstract– Sacramento Wash 005 (SaW) 005, Meteorite Hills 00428 (MET) 00428, and Mount Howe 88403 (HOW) 88403 are S‐rich Fe,Ni‐rich metal meteorites with fine metal structures and homogeneous troilite. We compare them with the H‐metal meteorite, Lewis Cliff 88432. Phase diagram analyses suggest that SaW 005, MET 00428, and HOW 88403 were liquids at temperatures above 1350 °C. Tridymite in HOW 88403 constrains formation to a high‐temperature and low‐pressure environment. The morphology of their metal‐troilite structures may suggest that MET 00428 cooled the slowest, SaW 005 cooled faster, and HOW 88403 cooled the quickest. SaW 005 and MET 00428 contain H‐chondrite like silicates, and SaW 005 contains a chondrule‐bearing inclusion that is texturally and compositionally similar to H4 chondrites. The compositional and morphological similarities of SaW 005 and MET 00428 suggest that they are likely the result of impact processing on the H‐chondrite parent body. SaW 005 and MET 00428 are the first recognized iron‐ and sulfide‐rich meteorites, which formed by impact on the H‐chondrite parent body, which are distinct from the IIE‐iron meteorite group. The morphological and chemical differences of HOW 88403 suggest that it is not from the H‐chondrite body, although it likely formed during an impact on a chondritic parent body.  相似文献   

17.
Abstract— On July 21, 2002, a meteorite fall occurred over the Thuathe plateau of western Lesotho. The well‐defined strewn field covers an area of 1.9 times 7.4 km. Many of the recovered specimens display a brecciated texture with leucocratic, angular to subrounded clasts in a somewhat darker groundmass. Mineralogical and chemical data, as well as oxygen isotopic analysis, indicate that Thuathe is an H4/5, S2/3 meteorite, with local H3 or H6 character. A number of anomalous features include somewhat high Co contents of kamacite and taenite relative to normal H‐group chondrites. Oxygen isotopic data plot at the edge of the normal H chondrite data field. Variable contents of metallic mineral phases and troilite result in a heterogeneous bulk composition (e.g., with regard to Si, Fe, and Mg), resulting in a spread of major element ratios that is not consistent with previously accepted H‐group composition. Trace element abundances are generally consistent with H chondritic composition, and Kr and Xe isotopic data agree with an H4 classification for this meteorite. Noble gas analysis gave U, Th‐4He gas retention and K‐Ar ages typical for H chondrites; no major thermal event affected this material since ~3.7 Ga. The exposure age for Thuathe is 5 Ma, somewhat lower than for other H chondrites. Cosmogenic nuclide analysis indicates a pre‐atmospheric radius of this meteorite between 35 and 40 cm. In the absence of evidence for solar gases, we classify Thuathe as a fragmental breccia. Numerous narrow, black veins cut across samples of Thuathe and are the result of a brittle deformation event that also caused local melting, especially in portions rich in sulfide. The formation of these veinlets is not the result of locally enhanced shock pressures (i.e., of shock melting) but rather of shearing under brittle conditions with local, friction‐related temperature excursions causing melting mostly of Fe‐sulfide and FeNi‐metal but also, locally, of silicate minerals. Frictional temperature excursions must have attained values in excess of 1500 °C to permit complete melting of forsteritic olivine.  相似文献   

18.
Abstract— A large (≥4.5 × 7 × 4 mm), igneous-textured clast in the Bovedy (L3) chondrite is notable for its high bulk SiO2 content (57.5 wt%). The clast consists of normally zoned orthopyroxene (83.8 vol%), tridymite (6.2 %), an intergrowth of feldspar (5.8 %) and sodic glass (3.1 %), pigeonite (1.0 %), and small amounts of chromite (0.2 %), augite, and Fe, Ni-metal; it is best described as a silica-rich orthopyroxenite. The oxygen-isotopic composition of the clast is similar, but not identical, to Bovedy and other ordinary chondrites. The clast has a superchondritic Si/Mg ratio, but has Mg/(Mg + Fe) and Fe/Mn ratios that are similar to ordinary chondrite silicate. The closest chemical analogues to the clast are radial-pyroxene chondrules, diogenites, pyroxene-silica objects in ordinary chondrites, and silicates in the IIE iron meteorite Weekeroo Station. The clast crystallized from a siliceous melt that cooled fast enough to prevent complete attainment of equilibrium but slow enough to allow nearly complete crystallization. The texture, form, size and composition of the clast suggest that it is an igneous differentiate from an asteroid or planetesimal that formed in the vicinity of ordinary chondrites. The melt probably cooled in the near-surface region of the parent object. It appears that in the source region of the clast, metallic and silicate partial melt were largely-to-completely lost during a relatively low degree of melting, and that during a higher degree of melting, olivine and low-Ca pyroxene separated from the remaining liquid, which ultimately solidified to form the clast. While these fractionation steps could not have all occurred at the same temperature, they could have been accomplished in a single melting episode, possibly as a result of heating by radionuclides or by electromagnetic induction. Fractionated magmas can also account for other Si-rich objects in chondrites.  相似文献   

19.
The Gao‐Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact‐melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth‐crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao‐Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous‐textured impact melt domain. Olivine is predominantly Fo80–82. The clast domain contains low‐Ca pyroxene. Impact melt‐grown pyroxene is commonly zoned from low‐Ca pyroxene in cores to pigeonite and augite in rims. Metal–troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni‐rich troilite. The metallography of metal–troilite droplets suggest a stage I cooling rate of order 10 °C s?1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao‐Guenie impact melt breccia and the impact‐melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000–40,000 °C yr?1. A simple model of conductive heat transfer shows that the Gao‐Guenie impact melt breccia may have formed in a melt injection dike ~0.5–5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.  相似文献   

20.
Abstract— The enstatite chondrite reckling peak (rkp) a80259 contains feldspathic glass, kamacite, troilite, and unusual sets of parallel fine‐grained enstatite prisms that formed by rapid cooling of shock melts. Metallic Fe,Ni and troilite occur as spherical inclusions in feldspathic glass, reflecting the immiscible Fe‐Ni‐S and feldspathic melts generated during the impact. The Fe‐Ni‐S and feldspathic liquids were injected into fractures in coarse‐grained enstatite and cooled rapidly, resulting in thin (≤ 10 μm) semicontinuous to discontinuous veins and inclusion trails in host enstatite. Whole‐rock melt veins characteristic of heavily shocked ordinary chondrites are conspicuously absent. Raman spectroscopy shows that the feldspathic material is a glass. Elevated MgO and SiO2 contents of the glass indicate that some enstatite and silica were incorporated in the feldspathic melt. Metallic Fe,Ni globules are enclosed by sulfide and exhibit Nienrichment along their margins characteristic of rapid crystallization from a Fe‐Ni‐S liquid. Metal enclosed by sulfide is higher in Si and P than metal in feldspathic glass and enstatite, possibly indicating lower O fugacities in metal/sulfide than in silicate domains. Fine‐grained, elongate enstatite prisms in troilite or feldspathic glass crystallized from local pyroxene melts that formed along precursor grain boundaries, but most of the enstatite in the target rock remained solid during the impact and occurs as deformed, coarsegrained crystals with lower CaO, Al2O3, and FeO than the fine‐grained enstatite. Reckling Peak A80259 represents an intermediate stage of shock melting between unmelted E chondrites and whole‐rock shock melts and melt breccias documented by previous workers. The shock petrogenesis of RKPA80259 reflects the extensive impact processing of the enstatite chondrite parent bodies relative to those of other chondrite types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号