首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A devitrified glass inclusion from the Guin (UNGR) iron consists of cryptocrystalline feldspars, pyroxenes, and silica and is rich in SiO2, Al2O3, and Na2O. It contains a rutile grain and is in contact with a large Cl apatite. The latter is very rich in rare earth elements (REEs) (~80 × CI), which display a flat abundance pattern, except for Eu and Yb, which are underabundant. The devitrified glass is very poor in REEs (<0.1 × CI), except for Eu and Yb, which have positive abundance anomalies. Devitrified glass and Cl apatite are out of chemical equilibrium and their complementary REE patterns indicate a genesis via condensation under reducing conditions. Inclusion 1 in the Kodaikanal (IIE) iron consists of glass only, whereas inclusion 2 consists of clinopyroxene, which is partly overgrown by low‐Ca pyroxene, and apatite embedded in devitrified glass. All minerals are euhedral or have skeletal habits indicating crystallization from the liquid precursor of the glass. Pyroxenes and the apatite are rich in trace elements, indicating crystallization from a liquid that had 10–50 × CI abundances of REEs and refractory lithophile elements (RLEs). The co‐existing glass is poor in REEs (~0.1–1 × CI) and, consequently, a liquid of such chemical composition cannot have crystallized the phenocrysts. Glasses have variable chemical compositions but are rich in SiO2, Al2O3, Na2O, and K2O as well as in HFSEs, Be, B, and Rb. The REE abundance patterns are mostly flat, except for the glass‐only inclusion, which has heavy rare earth elements (HREEs) > light rare earth elements (LREEs) and deficits in Eu and Yb—an ultrarefractory pattern. The genetic models suggested so far cannot explain what is observed and, consequently, we offer a new model for silicate inclusion formation in IIE and related irons. Nebular processes and a relationship with E meteorites (Guin) or Ca‐Al‐rich inclusions (CAIs) (Kodaikanal) are indicated. A sequence of condensation (CaS, TiN or refractory pyroxene‐rich liquids) and vapor‐solid elemental exchange can be identified that took place beginning under reducing and ending at oxidizing conditions (phosphate, rutile formation, alkali and Fe2+ metasomatism, metasomatic loss of REEs from glass).  相似文献   

2.
Abstract— The petrography and mineral and bulk chemistries of silicate inclusions in Sombrerete, an ungrouped iron that is one of the most phosphate‐rich meteorites known, was studied using optical, scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and secondary ion mass spectrometry (SIMS) techniques. Inclusions contain variable proportions of alkalic siliceous glass (?69 vol% of inclusions on average), aluminous orthopyroxene (?9%, Wo1–4Fs25–35, up to ?3 wt% Al), plagioclase (?8%, mainly An70–92), Cl‐apatite (?7%), chromite (?4%), yagiite (?1%), phosphate‐rich segregations (?1%), ilmenite, and merrillite. Ytterbium and Sm anomalies are sometimes present in various phases (positive anomalies for phosphates, negative for glass and orthopyroxene), which possibly reflect phosphate‐melt‐gas partitioning under transient, reducing conditions at high temperatures. Phosphate‐rich segregations and different alkalic glasses (K‐rich and Na‐rich) formed by two types of liquid immiscibility. Yagiite, a K‐Mg silicate previously found in the Colomera (IIE) iron, appears to have formed as a late‐stage crystallization product, possibly aided by Na‐K liquid unmixing. Trace‐element phase compositions reflect fractional crystallization of a single liquid composition that originated by low‐degree (?4–8%) equilibrium partial melting of a chondritic precursor. Compositional differences between inclusions appear to have originated as a result of a “filter‐press differentiation” process, in which liquidus crystals of Cl‐apatite and orthopyroxene were less able than silicate melt to flow through the metallic host between inclusions. This process enabled a phosphoran basaltic andesite precursor liquid to differentiate within the metallic host, yielding a dacite composition for some inclusions. Solidification was relatively rapid, but not so fast as to prevent flow and immiscibility phenomena. Sombrerete originated near a cooling surface in the parent body during rapid, probably impact‐induced, mixing of metallic and silicate liquids. We suggest that Sombrerete formed when a planetesimal undergoing endogenic differentiation was collisionally disrupted, possibly in a breakup and reassembly event. Simultaneous endogenic heating and impact processes may have widely affected silicate‐bearing irons and other solar system matter.  相似文献   

3.
A 435 kg piece of the Mont Dieu iron meteorite (MD) contains cm‐sized silicate inclusions. Based on the concentration of Ni, Ga, Ge, and Ir (8.59 ± 0.32 wt%, 25.4 ± 0.9 ppm, 61 ± 2 ppm, 7.1 ± 0.4 ppm, respectively) in the metal host, this piece can be classified as a IIE nonmagmatic iron. The silicate inclusions possess a chondritic mineralogy and relict chondrules occur throughout the inclusions. Major element analysis, oxygen isotopic analysis (Δ17O = 0.71 ± 0.02‰), and mean Fa and Fs molar contents (Fa15.7 ± 0.4 and Fs14.4 ± 0.5) indicate that MD originated as an H chondrite. Because of strong similarities with Netschaëvo IIE, MD can be classified in the most primitive subgroup of the IIE sequence. 40Ar/39Ar ages of 4536 ± 59 Ma and 4494 ± 95 Ma obtained on pyroxene and plagioclase inclusions show that MD belongs to the old (~4.5 Ga) group of IIE iron meteorites and that it has not been perturbed by any subsequent heating event following its formation. The primitive character of MD sheds light on the nature of its formation process, its thermal history, and the evolution of its parent body.  相似文献   

4.
Heavily shocked meteorites contain various types of high‐pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high‐pressure minerals are micron to submicron sized and occur within and in the vicinity of shock‐induced melt veins and melt pockets in chondrites and lunar, howardite–eucrite–diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid‐state high‐pressure transformation of the host‐rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to ~25 GPa. Textural, crystallographic, and chemical characteristics of high‐pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high‐pressure minerals in shocked meteorites that have been reported over the past 50 years.  相似文献   

5.
Northwest Africa (NWA) 6583 is a silicate‐bearing iron meteorite with Ni = 18 wt%. The oxygen isotope composition of the silicates (?′17O = ?0.439 ‰) indicates a genetic link with the IAB‐complex. Other chemical, mineralogical, and textural features of NWA 6583 are consistent with classification as a new member of the IAB‐complex. However, some unique features, e.g., the low Au content (1.13 μg g?1) and the extremely reducing conditions of formation (approximately ?3.5 ?IW), distinguish NWA 6583 from the known IAB‐complex irons and extend the properties of this group of meteorites. The chemical and textural features of NWA 6583 can be ascribed to a genesis by impact melting on a parent body of chondritic composition. This model is also consistent with one of the most recent models for the genesis of the IAB‐complex. Northwest Africa 6583 provides a further example of the wide lithological and mineralogical variety that impact melting could produce on the surface of a single asteroid, especially if characterized by an important compositional heterogeneity in space and time like a regolith.  相似文献   

6.
Abstract— The (compositionally) closely related iron meteorite groups IIIE and IIIAB were originally separated based on differences in kamacite bandwidth, the presence of carbides only in the IIIE group, and marginally resolvable differences on the Ga‐Ni and Ge‐Ni diagrams. A total of six IIIE iron meteorites have been analyzed for C and N using secondary ion mass spectrometry, and three of these have also been analyzed for N, Ne, and Ar by stepped combustion. We show that these groups cannot be resolved on the basis of N abundances or isotopic compositions but that they are marginally different in C‐isotopic composition and nitride occurrence. Cosmic‐ray exposure age distributions of the IIIE and IIIAB iron meteorites seem to be significantly different. There is a significant N‐isotopic range among the IIIE iron meteorites. A negative correlation between δ15N and N concentration suggests that the increase in s?15N resulted from diffusional loss of N.  相似文献   

7.
Abstract— Oxygen‐isotopic compositions were determined for a suite of enstatite chondrites and aubrites. In agreement with previous work (Clayton et al., 1984), most samples have O‐isotopic compositions close to the terrestrial fractionation line (TFL), and there appear to be no significant differences in O‐isotopic compositions between individual EH and EL chondrites and aubrites. Five enstatite meteorites have O‐isotopic compositions that are significantly different from the other samples and >0.2% away from the TFL. Two of these have petrographic evidence of brecciation and interaction between other meteorite types; for the other three, similar scenarios are suggested. There appears to be a systematic increase in δ18O from enstatite chondrites (both EH and EL) of petrologic type 3 to those of type 6. There is also good evidence that the EH meteorites do not fall along a mass fractionation line but along a line slope 0.66. At the present time, detailed understanding of the origin of these O‐isotopic systematics remain elusive but clearly point to a complex accretion history, parent‐body evolution, or both.  相似文献   

8.
The gamma‐ray activities of 33 meteorite samples (30 ordinary chondrites, 1 Mars meteorite, 1 iron, 1 howardite) collected during Omani‐Swiss meteorite search campaigns 2001–2008 were nondestructively measured using an ultralow background gamma‐ray detector. The results provide several types of information: Potassium and thorium concentrations were found to range within typical values for the meteorite types. Similar mean 26Al activities in groups of ordinary chondrites with (1) weathering degrees W0‐1 and low 14C terrestrial age and (2) weathering degree W3‐4 and high 14C terrestrial age are mostly consistent with activities observed in recent falls. The older group shows no significant depletion in 26Al. Among the least weathered samples, one meteorite (SaU 424) was found to contain detectable 22Na identifying it as a recent fall close to the year 2000. Based on an estimate of the surface area searched, the corresponding fall rate is ~120 events/106 km2*a, consistent with other estimations. Twelve samples from the large JaH 091 strewn field (total mass ~4.5 t) show significant variations of 26Al activities, including the highest values measured, consistent with a meteoroid radius of ~115 cm. Activities of 238U daughter elements demonstrate terrestrial contamination with 226Ra and possible loss of 222Rn. Recent contamination with small amounts of 137Cs is ubiquitous. We conclude that gamma‐ray spectroscopy of a selection of meteorites with low degrees of weathering is particularly useful to detect recent falls among meteorites collected in hot deserts.  相似文献   

9.
Abstract— Mn‐Cr systematics in phosphates (sarcopside, graftonite, beusite, galileiite, and johnsomervilleite) in IIIAB iron meteorites were investigated by secondary ion mass spectrometry (SIMS). In most cases, excesses in 53Cr are found and δ53Cr is well correlated with Mn/Cr ratios, suggesting that 53Mn was alive at the time of IIIAB iron formation. The inferred Mn‐Cr “ages” are different for different phosphate minerals. This is presumably due to a combined effect of the slow cooling rates of IIIAB iron meteorites and the difference in the diffusion properties of Cr and Mn in the phosphates. The ages of sarcopside are the same for the IIIAB iron meteorites. Johnsomervilleite shows apparent old ages, probably because of a gain of Cr enriched in 53Cr during the closure process. Apparently, old Mn‐Cr ages reported in previous studies can also be explained in a similar way. Therefore, the IIIAB iron meteorites probably experienced identical thermal histories and thus derived from the core of a parent body. Thermal histories of the parent body of IIIAB iron meteorites that satisfy the Mn‐Cr chronology and metallographic cooling rates were constructed by computer simulation. The thermal history at an early stage (<10 Ma after CAI formation) is well determined, though later history may be more model‐dependent. It is suggested that relative timing of various events in the IIIAB parent body may be estimated with the aid of the thermal history. There is a systematic difference in Mn and Cr concentrations in various minerals (phosphates, sulfide, etc.) among the IIIAB iron meteorites, which seems to be mainly controlled by redox conditions.  相似文献   

10.
Abstract– Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report 39Ar‐40Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous‐textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar‐Ar age spectra show unusual 39Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show 40Ar diffusion loss. Few additional Ar‐Ar ages for enstatite meteorites are available in the literature. When all available Ar‐Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50–4.54 Ga, whereas five other meteorites show only lower age limits over 4.35–4.46 Ga. Ar‐Ar ages of several enstatite chondrites are as old or older as the oldest Ar‐Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar‐Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1 Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event.  相似文献   

11.
Abstract— Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material enriched in Si, Na, Al, and Ca, which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New 39Ar‐40Ar ages for silicate from three different Caddo samples are consistent with a common age of 4.50‐4.51 Gyr. Less well‐defined Ar‐Ar degassing ages for inclusions from two other IABs, EET (Elephant Moraine) 83333 and Udei Station, are ?4.32 Gyr, whereas the age for Campo del Cielo varies considerably over about 3.23‐4.56 Gyr. New 129I‐129Xe ages for Caddo County and EET 83333 are 4557.9 ± 0.1 Myr and 4557–4560 Myr, respectively, relative to an age of 4562.3 Myr for Shallowater. Considering all reported Ar‐Ar degassing ages for IABs and related winonaites, the range is ?4.32‐4.53 Gyr, but several IABs give similar Ar ages of 4.50‐4.52 Gyr. We interpret these older Ar ages to represent cooling after the time of last significant metamorphism on the parent body and the younger ages to represent later 40Ar diffusion loss. The older Ar‐Ar ages for IABs are similar to Sm‐Nd and Rb‐Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the Ar‐Ar ages and IAB cooling rates deduced from Ni concentration profiles in IAB metal (Herpfer et al. 1994) are consistent if the time of the postassembly metamorphism was as late as about 4.53 Gyr ago. However, I‐Xe ages reported for some IABs define much older ages of about 4558–4566 Myr, which cannot easily be reconciled with the much younger Ar‐Ar and Sm‐Nd ages. An explanation for the difference in radiometric ages of IABs may reside in combinations of the following: a) I‐Xe ages have very high closure temperatures and were not reset during metamorphism about 4.53 Gyr ago; b) a bias exists in the 40K decay constants which makes these Ar‐Ar ages approximately 30 Myr too young; c) the reported Sm‐Nd and Rb‐Sr ages for Caddo are in error by amounts equal to or exceeding their reported 2‐sigma uncertainties; and d) about 30 Myr after the initial heating that produced differentiation of Caddo silicate and mixing of silicate and metal, a mild metamorphism of the IAB parent body reset the Ar‐Ar ages.  相似文献   

12.
Abstract— Cosmic‐ray exposure (CRE) ages and Mars ejection times were calculated from the radionuclide 81Kr and stable Kr isotopes for seven martian meteorites. The following 81Kr‐Kr CRE ages were obtained: Los Angeles = 3.35 ± 0.70 Ma; Queen Alexandra Range 94201 = 2.22 ± 0.35 Ma; Shergotty = 3.05 ± 0.50 Ma; Zagami = 2.98 ± 0.30 Ma; Nakhla = 10.8 ± 0.8 Ma; Chassigny = 10.6 ± 2.0 Ma; and Allan Hills 84001 = 15.4 ± 5.0 Ma. Comparison of these ages with previously obtained CRE ages from the stable noble gas nuclei 3He, 21Ne, and 38Ar shows excellent agreement. This indicates that the method for the production rate calculation for the stable nuclei is reliable. In all martian meteorites we observe effects induced by secondary cosmic‐ray produced epithermal neutrons. Epithermal neutron fluxes, φn (30–300 eV), are calculated based on the reaction 79Br(n, γβ)80Kr. We show that the neutron capture effects were induced in free space during Mars‐Earth transfer of the meteoroids and that they are not due to a pre‐exposure on Mars before ejection of the meteoritic material. Neutron fluxes and slowing down densities experienced by the meteoroids are calculated and pre‐atmospheric sizes are estimated. We obtain minimum radii in the range of 22–25 cm and minimum masses of 150–220 kg. These results are in good agreement with the mean sizes reported for model calculations using current semiempirical data.  相似文献   

13.
Abstract— The radiogenic 207Pb/206Pb ratio is the only extant nuclide chronometer with sufficient time resolution for studies of the solar nebula accretion and early asteroidal differentiation and metamorphism. Pb isotopic dates can be used to link the dates obtained from extinct nuclide chronometers to the absolute time scale. The factors that control precision and accuracy of Pb isotopic dates of meteorites: instrumental mass fractionation in isotopic analysis, mass spectrometer sensitivity, removal of common Pb, multi‐stage evolution of U‐Pb systems, disturbances caused by diffusion, alteration, and shock metamorphism, and uncertainties in decay constants and the natural ratio of the U isotopes are reviewed. The precision of Pb isotopic dates of meteorites attained with currently available techniques and methodology is ±0.5–1.0 Myr in favorable cases. The accuracy of time interval measurements is approximately the same. The most serious limitation on precision and accuracy of Pb isotopic dates is placed by the presence of common Pb of uncertain and/or variable isotopic composition. Improvement in precision and accuracy of Pb isotopic dates would be possible through combined advancement of techniques of isotopic analysis (most importantly, better control over instrumental mass fractionation) and more effective techniques for the removal of common Pb, together with a better understanding of the effects of thermal metamorphism, shock metamorphism, and aqueous alteration on the U‐Pb system in meteorites.  相似文献   

14.
The relativistic external shock model of gamma-ray burst(GRB) afterglows has been established with five free parameters, i.e., the total kinetic energy E, the equipartition parameters for electrons ε_e and for the magnetic field ε_B, the number density of the environment n and the index of the powerlaw distribution of shocked electrons p. A lot of modified models have been constructed to consider the variety of GRB afterglows, such as: the wind medium environment by letting n change with radius,the energy injection model by letting kinetic energy change with time and so on. In this paper, by assuming all four parameters(except p) change with time, we obtain a set of formulas for the dynamics and radiation, which can be used as a reference for modeling GRB afterglows. Some interesting results are obtained. For example, in some spectral segments, the radiated flux density does not depend on the number density or the profile of the environment. As an application, through modeling the afterglow of GRB 060607A, we find that it can be interpreted in the framework of the time dependent parameter model within a reasonable range.  相似文献   

15.
Abstract— We report the occurrence of an oxide‐bearing clast and an FeO‐rich clast from aubrites. The FeO‐rich clast in Pesyanoe is dominated by olivine and pyroxene phenocrysts with mineral compositions slightly less FeO‐rich than is typical for H chondrites. In Allan Hills (ALH) 84008, the oxide‐bearing clast consists of a single forsterite grain rimmed by an array of sulfides, oxides, and phosphides. We consider a number of possible origins. We can exclude formation by melting of oxide‐bearing chondrules and CAIs formed in enstatite chondrites. The Pesyanoe clast may have formed in a more oxidized region of the aubrite parent body or, more likely, is a foreign clast from a more oxidized parent body. The ALH 84008 clast likely formed by reaction between sulfides and silicates as a result of cooling, oxidation, or de‐sulfidization. This clast appears to be the first oxide‐bearing clast from an aubritic breccia that formed on the aubrite parent body. Identification of additional oxide‐bearing clasts in aubrites could shed light on whether this was a widespread phenomenon and the origin of these enigmatic objects.  相似文献   

16.
Comparative planetary geochemistry provides insight into the origin and evolutionary paths of planetary bodies in the inner solar system. The eucrite and angrite achondrite groups are particularly interesting because they show evidence of early planetary differentiation. We present 147Sm‐143Nd and 176Lu‐176Hf analyses of eight noncumulate (basaltic) eucrites, two cumulate eucrites, and three angrites, which together place new constraints on the evolution and differentiation histories of the crusts of the eucrite and angrite parent bodies and their mantle mineralogies. The chemical compositions of both eucrites and angrites indicate similar evolutionary paths and petrogenetic models with formation and isolation of differentiated crustal reservoirs associated with segregation of ilmenite. We report a 147Sm‐143Nd mineral isochron age for the Moama cumulate eucrite of 4519 ± 34 Ma (MSWD = 1.3). This age indicates protracted magmatism within deep crustal layers of the eucrite parent body lasting up to about 50 Ma after the formation of the solar system. We further demonstrate that the isotopic compositions of constituent minerals are compromised by secondary processes hindering precise determination of mineral isochron ages of basaltic eucrites and angrites. We interpret the changes in geochemistry and, consequently, the erroneous 147Sm‐143Nd and 176Lu‐176Hf internal mineral isochron ages of basaltic eucrites and angrites as the result of metamorphic events such as impacts (effects from pressure, temperature, and peak shock duration) on the surfaces of the eucrite and angrite parent bodies.  相似文献   

17.
Abstract— A database of magnetic susceptibility (χ) measurements on different non‐ordinary chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of χ. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3–4 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well‐grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4–5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka (A)‐88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). χ values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.  相似文献   

18.
Abstract— Metal‐troilite textures are examined in metamorphosed and impact‐affected ordinary chondrites to examine the response of these phases to rapid changes in temperature. Complexly intergrown metal‐troilite textures are shown to form in response to three different impact‐related processes. (1) During impacts, immiscible melt emulsions form in response to spatially focused heating. (2) Immediately after impact events, re‐equilibration of heterogeneously distributed heat promotes metamorphism adjacent to zones of maximum impact heating. Where temperatures exceed ~850 ° C, this post‐impact metamorphism results in melting of conjoined metal‐troilite grains in chondrites that were previously equilibrated through radiogenic metamorphism. When the resulting Fe‐Ni‐S melt domains crystallize, a finely intergrown mixture of troilite and metal forms, which can be zoned with kamacite‐rich margins and taenite‐rich cores. (3) At lower temperatures, post‐impact metamorphism can also cause liberation of sulfur from troilite, which migrates into adjacent Fe‐Ni metal, allowing formation of troilite and occasionally copper within the metal during cooling. Because impact events cause heating within a small volume, post‐impact metamorphism is a short duration event (days to years) compared with radiogenic metamorphism (>106 years). The fast kinetics of metal‐sulfide reactions allows widespread textural changes in conjoined metal‐troilite grains during post‐impact metamorphism, whereas the slow rate of silicate reactions causes these to be either unaffected or only partially annealed, except in the largest impact events. Utilizing this knowledge, information can be gleaned as to whether a given meteorite has suffered a post‐impact thermal overprint, and some constraints can be placed on the temperatures reached and duration of heating.  相似文献   

19.
The iron‐bearing phases in a ureilite fragment (AS#051) from the Almahata Sitta meteorite are studied using Mössbauer spectroscopy, X‐ray diffraction (XRD), and electron microprobe analysis (EMPA). AS#051 has a typical ureilite texture of medium‐ to coarse‐grained silicates (olivine, orthopyroxene, and pigeonite) with minor opaques (Fe‐Ni metal, troilite, and graphite). The silicate compositions, determined by EMPA, are homogeneous: olivine (Fo90.2), orthopyroxene (En86.3Fs8.6Wo5.1), and pigeonite (En81.6Fs8.9Wo9.5), and are similar to those of magnesian ureilites. The modal abundance of mineral phases was determined by Rietveld refinement of the powder XRD data. The Mössbauer spectra at 295 K and 78 K are composed of two sharp well‐defined paramagnetic doublets superimposed on a well‐resolved magnetic sextet and other weak absorption features. The two paramagnetic doublets are assigned to olivine and pyroxene (orthopyroxene and pigeonite), and the ferromagnetic sextet to kamacite (magnetic hyperfine field ≈ 33.2 T), in agreement with the XRD characterization. The Mössbauer results also show the presence of small amounts of troilite (FeS) and cohenite ([Fe,Ni,Co]3C). Using the Mössbauer data, the relative abundance of each Fe‐bearing phase is determined and compared with the results obtained by XRD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号