首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We classified homogenous river types across Europe and searched for fish metrics qualified to show responses to specific pressures (hydromorphological pressures or water quality pressures) vs. multiple pressures in these river types. We analysed fish taxa lists from 3105 sites in 16 ecoregions and 14 countries. Sites were pre-classified for 15 selected pressures to separate unimpacted from impacted sites. Hierarchical cluster analysis was used to split unimpacted sites into four homogenous river types based on species composition and geographical location. Classification trees were employed to predict associated river types for impacted sites with four environmental variables. We defined a set of 129 candidate fish metrics to select the best reacting metrics for each river type. The candidate metrics represented tolerances/intolerances of species associated with six metric types: habitat, migration, water quality sensitivity, reproduction, trophic level and biodiversity. The results showed that 17 uncorrelated metrics reacted to pressures in the four river types. Metrics responded specifically to water quality pressures and hydromorphological pressures in three river types and to multiple pressures in all river types. Four metrics associated with water quality sensitivity showed a significant reaction in up to three river types, whereas 13 metrics were specific to individual river types. Our results contribute to the better understanding of fish assemblage response to human pressures at a pan-European scale. The results are especially important for European river management and restoration, as it is necessary to uncover underlying processes and effects of human pressures on aquatic communities.  相似文献   

2.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0–61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (‘meltwater’ and ‘groundwater’) were identified and used as a basis for end‐member mixing analyses to assess seasonal and year‐to‐year variability in water source dynamics. In glacier‐fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non‐glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In the twentieth century Polish Carpathian rivers were considerably modified by channelization and gravel mining, with significant detrimental effects to their ecological integrity, vertical stability of the streambeds and flood hazard to downstream river reaches. Restoration of the rivers is thus necessary to improve their ecological status and re‐establish geomorphic dynamic equilibrium conditions. Various approaches to defining hydromorphological reference conditions, proposed to date in river restoration literature, have serious deficiencies. In particular, environmental changes that took place in the catchments of Carpathian rivers during the twentieth century invalidate the historical state of the rivers as reference for their restoration. This is illustrated by a change from bar‐braided to island‐braided channel pattern that occurred in the past century in unmanaged sections of the Czarny Dunajec in response to a reduction in flow and sediment dynamics of the river. We indicate that reference conditions should be defined as those which exist or would exist under present environmental conditions in the catchment but without human influence on the channel, riparian zone and floodplain of the river which is to be restored. This assumption was tested through the evaluation of hydromorphological river quality of the Czarny Dunajec according to the European Standard EN‐14614. The evaluation confirmed a high‐status hydromorphological quality in an unmanaged channel section, which can thus be used as a reference for restoration of impacted river sections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A new assessment system for macrophytes and phytobenthos in German rivers meeting the requirements of the Water Framework Directive (WFD) of the European Community is described. Biocoenotic types based on biological, chemical and hydromorphological data from over 200 river sites covering the main ecoregions, hydromorphological stream types and degradation forms have been defined. For developing a classification system the quality element macrophytes and phytobenthos was divided into three components: macrophytes, benthic diatoms and remaining phytobenthos. For macrophytes seven types including one subtype, for benthic diatoms 14 types including three subtypes and for the remaining phytobenthos five river types were identified. The benthic vegetation at reference condition was described for most of the river types. Degradation is characterised as deviation in benthic vegetation species composition and abundance from the reference biocoenosis. For classification in five ecological status classes, several metrics were developed and used in combination with existing indices. For some of the described river types additional investigations are necessary before a classification system can be developed.  相似文献   

5.
The quality of the river Chienti (eastern‐central Apennines, Italy) has been evaluated according to the Water Framework Directive 2000/60/EC, taking into consideration both biotic (animal and vegetable) and chemical parameters. In studying the biotic component, two indices were used: the E.B.I, Extended Biotic Index (version adapted to the Italian rivers), based on macroinvertebrates, and the EPI‐D, the Eutrophication and/or Pollution Index, based on diatoms. For both macroinvertebrates and diatoms, two samplings were conducted, one in June and the other in October 2003. Instead, according to the Italian Law 152/99 the chemical and bacteriological analyses were conducted monthly for the entire year. The results of biomonitoring and chemical‐bacteriological analyses unanimously demonstrated a good ecological situation for the upper section of the Chienti, though the situation tends to worsen as the river continues its descent and undergoes increased anthropogenic pressure. Data obtained were correlated with Spearman's coefficients and principal component analysis. Both statistical calculations showed clear, direct correlation between the two biotic indices and an inverse correlation between these and the chemical and bacteriological parameters. However, a few differences of judgement that emerged among the various indices highlight the importance of using them simultaneously in order to obtain a more accurate diagnosis of the ecological status of the watercourses.  相似文献   

6.
The main objective in this study was to compare the physico-chemical characteristics and biota of a river (Mukuvisi) passing through an urban area to that of a non-urbanised river (Gwebi). Five sites in the Mukuvisi River and five sites in the Gwebi River were sampled for water physico-chemical parameters (pH, conductivity, DO, BOD, TDS, ammonia, Cl, SO42−, PO42−, NO33−, F, Pb, Cu, Fe, Mn, Zn and Cr) once every month between August, 2012–August, 2013. Cluster analysis based on the physico-chemical parameters grouped the sites into two groups. Mukuvisi River sites formed their own grouping except for one site which was grouped with Gwebi River sites. Principal Component Analysis (PCA) was used to extract the physico-chemical parameters that account for most variations in water quality in the Mukuvisi and Gwebi Rivers. PCA identified sulphate, chloride, fluoride, iron, manganese and zinc as the major factors contributing to the variability of Mukuvisi River water quality. In the Gwebi river, sulphate, nitrate, fluoride and copper accounted for most of the variation in water quality. Canonical Correspondence Analysis (CCA) was used to explore the relationship between physico-chemical parameters and macroinvertebrate communities. CCA plots in both Mukuvisi and Gwebi Rivers showed significant relationships between macroinvertebrate communities and water quality variables. Phosphate, ammonia and nitrates were correlated with Chironomidae and Simulidae. Gwebi River had higher (P < 0.05, ANOVA) macroinvertebrates and fish diversity than Mukuvisi River. Clarias gariepinus from the Mukuvisi River had high liver histological lesions and low AChE activity and this led to lower growth rates in this river.  相似文献   

7.
In many smallholder farms in sub-Saharan Africa dambos are used for grazing and crop production especially horticultural crops. Increased use of dambos especially for crop production can result in ground and surface water pollution. Ground and surface water quality along a dambo transect in Chihota, Zimbabwe, was investigated between October 2013 and February 2014. The transect was divided into; upland (control), dambo gardens (mid-slope) and the river (valley bottom). Water samples for quality assessment were collected in October 2013 (peak of dry season) and February 2014 (peak of rainy season). The collected water samples were analysed for pH, faecal coliforms, total nitrogen, electrical conductivity, total dissolved solids (TDS), and some selected nutrients (P, K, Ca, Mg, Na, Zn, and Cu). Water pH was 7.0, 6.4 and 6.1 for river water, garden and upland wells respectively. During the wet season total nitrogen (TN) concentrations were 233 mg/L for uplands, 242 mg/L for gardens and 141 mg/L for the river. During the dry season, TN concentrations were all below 20 mg/L, and were not significantly different among sampling stations along the dambo transect. Dry season faecal coliform units (fcu) were significantly different and were 37.2, 30.0 and 5.0 for upland wells, garden wells and river respectively. Wet season faecal coliforms were also significantly different and were 428.5, 258.0 and 479.4 fcu for upland wells, garden wells and river respectively. The other measured physico-chemical parameters also varied with sampling position along the transect. It was concluded that TN and fcu in sampled water varied with season and that wet season concentrations were significantly higher than dry season concentrations. High concentrations of faecal coliforms and total N during the wet season was attributed to increased water movement. Water from upland wells, garden wells and river was not suitable for human consumption according to WHO standards during both the dry and wet seasons.  相似文献   

8.
In the Pearl River Delta (PRD), river water quality deteriorates continually due to the population increase and ongoing industrialization and urbanization. In this study, a water quality management paradigm based on the seasonal variation is proposed. For better exploring the seasonal change of water quality, wavelet analysis was used to analyze the division of dry and wet seasons in the PRD during 1952–2009. Then water quality seasonal variation in 2008 and relevant impact factors were analyzed by multivariate statistic methods as a case to make some management measures. The results show that there are some differences of dry and wet seasons division among different years. Wet season mainly appear from April to September, which occupy the largest proportion among the 58 years (about 70%) and then followed by the wet season from May to October (about 13.8% of the total years). As to the water quality of 2008, significant differences exist between dry and wet seasons for 17 water quality parameters except TP, , Fe2+, and Zn2+. Levels of parameters pH, EC, CODMn, BOD5, , , and Cl? in dry season are much higher than those in wet season. In dry season the variations of river water quality are mainly influenced by domestic sewage, industrial effluents, and salt water intrusion. While in wet season, except the aforementioned pollution sources, drainages from cultivated land and livestock farm are also the main factors influencing water pollution. Thus, water quality management measures are proposed in dry and wet seasons, respectively. The results obtained from this study would further facilitate water quality protection and water resources management in the PRD.  相似文献   

9.
To compare the impacts of river discharge on the surface water quality of the Xiangjiang River in China, 12 surface water quality parameters recorded at 31 sampling sites from January 1998 to December 2008 along the river and its main tributaries were analyzed. Significantly higher concentrations of total nitrogen, ammoniacal nitrogen, and total phosphorus, and biochemical oxygen demand were observed during low‐flow periods than during high‐flow periods, implying a higher risk to local residents drinking untreated water during low‐flow periods. Pollution indexes, including the inorganic pollution index and integrated pollution index (IPI), were negatively related to impervious surface area (ISA) and cropland area (CLA) when ISA (CLA) was less than 160 (3000) km2. However, the relationship was positive when ISA (CLA) was larger than 160 (3000) km2, which provided a reasonable explanation for the observed spatial patterns of water quality. Distinct increasing temporal trends for two kinds of pollution indexes were also found. The annual ISA was significantly related to the rapid degradation of water quality from 1998 to 2008, with correlation coefficient (r) values of 0.816 (p = 0.002) and 0.711 (p = 0.014) for the organic pollution index (OPI) and IPI, respectively. However, annual rainfall was negatively correlated with the two indexes with r values of 0.785 (p = 0.002) and 0.448 (p = 0.093) for OPI and IPI, respectively. Our study highlights that decision makers should be more aware of recent increases in the pollution of the Xiangjiang River, especially at downriver sites and during low‐flow periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Large wood (LW) is an ecosystem engineer and keystone structure in river ecosystems, influencing a range of hydromorphological and ecological processes and contributing to habitat heterogeneity and ecosystem condition. LW is increasingly being used in catchment restoration, but restored LW jams have been observed to differ in physical structure to naturally occurring jams, with potential implications for restoration outcomes. This article examines the structural complexity and ecosystem engineering effects of LW jams at four sites with varying management intensity incorporating natural and restored wood. Our results reveal: (i) structural complexity and volume of jams was highest in the site with natural jams and low intensity riparian management, and lowest in the suburban site with simple restored jams; and (ii) that structural complexity influences the ecosystem engineering role of LW, with more complex jams generating the greatest effects on flow hydraulics (flow concentration, into bed flows) and sediment characteristics (D50, organic content, fine sediment retention) and the simplest flow deflector-style restored jams having the least pronounced effects. We present a conceptual model describing a continuum of increasing jam structural complexity and associated hydromorphological effects that can be used as a basis for positioning and evaluating other sites along the management intensity spectrum to help inform restoration design and best practice.  相似文献   

11.
1990年以来北京密云水库主要水环境因子时空分布特征   总被引:3,自引:0,他引:3  
根据19902011年密云水库共12个监测点的月监测资料,采用聚类分析研究各监测点水环境相似性及空间分布特征,采用因子分析识别影响水质的主要因子并评价各采样点的综合水质.通过绝对主成分多元回归分析,获得汛期和非汛期各因子对各水质指标的贡献率.利用季节性Kendall检验及流量调节检验对密云水库库区水化学特征和水质状况时空分布特征进行了研究.结果表明:汛期水质主要受到农业营养物质的影响,其次为生物化学因素和有机物的影响.非汛期水质主要受到农牧业排放因素的影响,其次为人类活动和生物化学因素的影响.因子得分综合评价显示,汛期辛庄桥、内湖和大关桥综合水质较差,潮河、库西和白河综合水质较好.非汛期辛庄桥、石佛桥和大关桥综合水质较差,库东、套里和恒河综合水质较好.主要水质指标的年际变化规律不同,但最终都趋于平稳.与潮河、白河入库水质变化相比,库区水质变化趋势较小,上游入库水质和库区水质都整体趋好.除白河入库的总氮和总磷外,其他监测指标的变化趋势经流量调节前后基本一致,表明流量并不是引起水质趋势变化的主要因素,水质的变化主要是由于污染源变化而引起.  相似文献   

12.
Freshwater ecosystems in the Indo-Burma biodiversity hotspot face immediate threats through habitat loss and species extinction. Systems to monitor ecological status and trends in biodiversity are therefore crucially needed. Myanmar is part of Indo-Burma but with no past experience of biomonitoring in freshwaters. In this study, we aimed to assess the ecological and biodiversity status of a lowland river network in south-central Myanmar by identifying and quantifying pressures using macroinvertebrates as bioindicators. Novel data on water quality (nutrients, sediments and metals), hydromorphology (Morphological Quality Index; MQI), habitat quality (Litter-Siltation Index; LSI), land use, and macroinvertebrates were collected from 25 river sites. The dominant pressures on rivers were urban land use, inputs of untreated sewage, in-stream and riparian garbage littering, run-off from agricultural fields and plantations, as well as physical habitat degradation. Water chemistry data indicated inputs of sediments and nutrients to degraded streams, but no obvious metal pollution. The LSI and MQI indices indicated high perturbation in agricultural and urban areas, respectively. Ecological status was assessed using a first version of a modified Average Score per Taxon index (ASPT), while biodiversity was assessed by family richness within the orders Ephemeroptera, Plecoptera, Trichoptera, Coleoptera and Odonata (EPTCO), which was tested against the pressure gradient by principal component regressions. ASPT had high diagnostic capabilities (R2 = 0.68, p < 0.001) and showed that the index can be used to evaluate ecological water quality in this region. Biodiversity, expressed as family richness, also declined along the gradient (R2 = 0.59, p = 0.041), giving support to the fact that current land-use practices in this area are unsustainable.  相似文献   

13.
S. Rehana  P. P. Mujumdar 《水文研究》2011,25(22):3373-3386
Analysis of climate change impacts on streamflow by perturbing the climate inputs has been a concern for many authors in the past few years, but there are few analyses for the impacts on water quality. To examine the impact of change in climate variables on the water quality parameters, the water quality input variables have to be perturbed. The primary input variables that can be considered for such an analysis are streamflow and water temperature, which are affected by changes in precipitation and air temperature, respectively. Using hypothetical scenarios to represent both greenhouse warming and streamflow changes, the sensitivity of the water quality parameters has been evaluated under conditions of altered river flow and river temperature in this article. Historical data analysis of hydroclimatic variables is carried out, which includes flow duration exceedance percentage (e.g. Q90), single low‐flow indices (e.g. 7Q10, 30Q10) and relationships between climatic variables and surface variables. For the study region of Tunga‐Bhadra river in India, low flows are found to be decreasing and water temperatures are found to be increasing. As a result, there is a reduction in dissolved oxygen (DO) levels found in recent years. Water quality responses of six hypothetical climate change scenarios were simulated by the water quality model, QUAL2K. A simple linear regression relation between air and water temperature is used to generate the scenarios for river water temperature. The results suggest that all the hypothetical climate change scenarios would cause impairment in water quality. It was found that there is a significant decrease in DO levels due to the impact of climate change on temperature and flows, even when the discharges were at safe permissible levels set by pollution control agencies (PCAs). The necessity to improve the standards of PCA and develop adaptation policies for the dischargers to account for climate change is examined through a fuzzy waste load allocation model developed earlier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The use of multimetric indices as tools for assessing aquatic ecosystem health in most of the developing countries such as Togo is still lacking. To fill this gap, we developed a macroinvertebrates-based multimetric index for the Zio river basin of Togo. Forty-two sites were assessed for the development and the validation of the Multimetric Index of Zio River Basin (MMIZB). Thirty-nine candidate metrics belonging to four categories (composition metrics, functional feeding metrics, diversity metrics and tolerance measure metrics) were evaluated. After comprehensive multiple selection procedure, six core metrics were retained to provide the final MMIZB. The results showed that the MMIZB responded to a set of organic pollution (chemical oxygen demand, ammonium, total suspended solid) and hydromorphological alterations, which corresponded to a set of gradients of human pressures affecting the ecological integrity of Zio river basin water bodies (r = 0.78, p < 0.001). The final macroinvertebrate index well distinguished the reference sites and impaired sites of a validation data set (p < 0.001) and showed a significant relationship between water and habitat quality based on Prati’s index (r = 0.73, p < 0.001) and Multimetric Macroinvertebrates Index of Vietnam (MMI_Vietnam) (r = 0.88, p < 0.001). This work underlines the relevance of the MMIZB as an effective tool for biological monitoring and decision making in water management of Zio river basin.  相似文献   

15.
Changes in lotic benthic macroinvertebrate assemblages along the transboundary Axios‐Vardar River (Greece – Former Yugoslavian Republic of Macedonia) were examined in order to identify major anthropogenic impacts correlated to the benthic community composition during the low flow season. Macrozoobenthos and water samples were collected from 21 sites during summer 2000 and beginning of autumn 2001. Parallel to sampling, the recording of the physical structure of the sites took place using the River Habitat Survey (RHS) method. The multivariate techniques of FUZZY and Canonical Correspondence Analysis (CCA), as well as the Hellenic biotic score (HES) and the habitat quality scores (HMS, HQA) were applied to the data. Total dissolved solids and total suspended solids were found to be the primary factors affecting the structure of the observed communities. Additionally, species composition responded to anthropogenic activities, e. g. untreated sewage effluents, industrial discharges, agricultural runoff, intense water abstraction and impoundment. As expected, macrozoobenthos community composition shifted from sensitive to tolerant taxa where human impacts were most evident.  相似文献   

16.
17.
The ecological functioning of floodplain lakes is largely influenced by the interaction with the river mainstem. In this study, seasonal variation in water chemistry and the relationship with the river conditions were compared between floodplain lakes that differ in the level of connection to the Usumacinta River, the largest river of Mesoamerica. Samples for suspended solids, nutrients, and chlorophyll a were collected through the year in lakes permanently connected to the river and in lakes that only received water from the Usumacinta for a short period during peak flow. Floodplain lakes showed higher total suspended solids than the river during the dry season while during the rainy season greater differences were observed between the river and the lakes, probably explained by higher concentrations in the river and greater sedimentation in the lakes. Greater organic matter content in the suspended solids was observed in the floodplain lakes, particularly in the more isolated lakes, likely related to high algal biomass. Nitrate concentrations were always higher in the river than in the lakes and lower nitrate concentrations occurred at the isolated lakes, suggesting that processes that remove nitrate occur through the year and are a common feature of floodplain lakes. Phosphorus in the connected lakes was higher than in the river only during the dry season, while in the isolated lakes concentrations were always greater than in the river. Chlorophyll a concentrations were higher in the connected lakes than in the river only during the dry season, while the more isolated lakes exhibited higher values through the year, showing signs of eutrophication. Suspended organic matter, nitrate, and chlorophyll showed larger differences between lake and river sites in the more isolated lakes, probably related to greater water residence time and its influence on primary production. Less connected lakes are more vulnerable to flow alteration because the brief period of connection to the river can be compromised and the effects of eutrophication exacerbated.  相似文献   

18.
Population growth and economic development have resulted in increased water demands, threatening freshwater resources. In riverine ecosystems, continuous monitoring of the river quality is needed to follow up on their ecological condition in the light of water pollution and habitat degradation. However, in many parts of the world, such monitoring is lacking, and ecological indicators have not been defined. In this study, we assessed seasonal variation in benthic macroinvertebrate assemblages in a tropical river catchment in northeastern Tanzania, which currently experiencing an increase in agricultural activities. We examined the potential of in-stream environmental variables and land-use patterns to predict the river macroinvertebrate assemblages, and also identified indicator taxa linked to specific water quality conditions. Macroinvertebrate abundance, taxon richness and TARISS (Tanzania River Scoring System) score were higher in the dry season most likely due to higher surface runoff from agricultural land and poorer water quality in the wet season. In the wet season macro invertebrates seem to be limited by chlorophyll-a, oxygen and phosphorous while in the dry season, when water flow is lower, nitrogen and turbidity become important. Substrate composition was important in both seasons. Given the fact that different selective filters limit macroinvertebrate assemblages in both seasons, a complete picture of water quality can only be established by monitoring in both seasons. Riparian buffer zones may help to alleviate some of the observed negative effects of agricultural activities on the river system in the wet season while limiting irrigation return flows may increase water quality in the dry season.  相似文献   

19.
基于中国太湖梅梁湾东部的无锡市滨湖区河网29个监测点在丰水期、平水期和枯水期的流速和水质监测数据,将河网分为梁溪河、曹王泾、骂蠡港、城市河网南区以及城市河网北区5个区域,对流速和典型水质指标的时空异质性进行分析,结合主成分分析和相关性分析,得到各区域水动力与水质现状及其成因.结果显示:梁溪河和曹王泾的水质条件和水动力条件较好,多数水质因子与流速表现出了强相关性;骂蠡港的水质和流速区域变化明显,表现弱相关性;城市河网北区和南区的流速较缓,河道污染负荷较大,流速与水质因子之间的相关性较低.通过在滨湖河网开展流速和水质的野外监测,分析流速对于河网水环境的实际效果,验证不同水质指标与流速之间的响应关系,为滨湖河网区水质保护和科学的水污染治理技术提供基础支撑.  相似文献   

20.
An investigation about distribution of Giardia cysts and Cryptosporidium oocysts in natural, drinking, and recreational water in Northwestern Greece was performed. Five rivers (Aoos, Arachthos, Kalamas, Louros, and Voidomatis) and one lake (Pamvotis Ioannina Lake) in Northwestern Greece were investigated during a 10‐month period. Drinking and recreational water (swimming pools) from the area were also examined. Samples were collected from prefixed sampling stations and processed following a modification of standard methods for the microbiological examination of water, as suggested by the APHA/AWWA/WEF. Both Giardia cysts and Cryptosporidium oocysts were isolated from Pamvotis Ioannina Lake (15 positive/27 examined samples). Significantly lower numbers of Cryptosporidium oocysts were detected in Arachthos River (1/5), Voidomatis River (1/5), drinking water (1/7), and pool water samples (1/9). No Giardia cysts were detected, neither in river water, nor in drinking, and pool water samples. The results clearly show that, with the exception of Pamvotis Ioannina Lake, where contamination of high level was observed, natural water sources of the investigated area have low pollution, resulting in low contamination with parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号