首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the use of symplectic integration algorithms in long-term integrations in the field of celestial mechanics. The methods' advantages and disadvantages (with respect to more common integration methods) are discussed. The numerical performance of the algorithms is evaluated using the 2-body and circular restricted 3-body problems. Symplectic integration methods have the advantages of linear phase error growth in the 2-body problem (unlike most other methods), good conservation of the integrals of the motion, good performance for moderately eccentric orbits, and ease of use. Its disadvantages include a relatively large number of force evaluations and an inability to continuously vary the step size.  相似文献   

2.
An operator associated with third-order potential derivatives and a force gradient operator corresponding to second-order potential derivatives are used together to design a number of new fourth-order explicit symplectic integrators for the natural splitting of a Hamiltonian into both the kinetic energy with a quadratic form of momenta and the potential energy as a function of position coordinates.Numerical simulations show that some new optimal symplectic algorithms are much better than their non-optimal c...  相似文献   

3.
We describe a parallel hybrid symplectic integrator for planetary system integration that runs on a graphics processing unit (GPU). The integrator identifies close approaches between particles and switches from symplectic to Hermite algorithms for particles that require higher resolution integrations. The integrator is approximately as accurate as other hybrid symplectic integrators but is GPU accelerated.  相似文献   

4.
For a Hamiltonian that can be separated into N+1(N\geq 2) integrable parts, four algorithms can be built for a symplectic integrator. This research compares these algorithms for the first and second order integrators. We found that they have similar local truncation errors represented by error Hamiltonian but rather different numerical stability. When the computation of the main part of the Hamiltonian, H 0, is not expensive, we recommend to use S * type algorithm, which cuts the calculation of the H 0 system into several small time steps as Malhotra(1991) did. As to the order of the N+1 parts in one step calculation, we found that from the large to small would get a slower error accumulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
By adding force gradient operators to symmetric compositions, we build a set of explicit fourth-order force gradient symplectic algorithms, including those of Chin and coworkers, for a separable Hamiltonian system with quadratic kinetic energy T and potential energy V . They are extended to solve a gravitational n-body Hamiltonian system that can be split into a Keplerian part H 0 and a perturbation part H 1 in Jacobi coordinates. It is found that the accuracy of each gradient scheme is greatly superior to ...  相似文献   

6.
辛积分器中沿迹误差的一种补偿方法   总被引:2,自引:0,他引:2  
廖新浩  刘林 《天文学报》1995,36(1):101-106
辛积分器严格描述了一摄动Hamilton系统的流,因而导致天体轨道的沿迹误差随时间呈线性增长趋势。本文利用这一特点,提出了一种对其沿迹误差进行估算的数值方法,从而达到了对数值结果进行沿迹误差补偿的目的,数值结果证实了此方法在较大积分步长和较长积分时间的数值计算中是有效的。  相似文献   

7.
Modern N -body techniques for planetary dynamics are generally based on symplectic algorithms specially adapted to the Kepler problem. These methods have proven very useful in studying planet formation, but typically require the time-step for all objects to be set to a small fraction of the orbital period of the innermost body. This computational expense can be prohibitive for even moderate particle number for many physically interesting scenarios, such as recent models of the formation of hot exoplanets, in which the semimajor axis of possible progenitors can vary by orders of magnitude. We present new methods which retain most of the benefits of the standard symplectic integrators but allow for radial zones with distinct time-steps. These approaches should make simulations of planetary accretion with large dynamic range tractable. As proof-of-concept, we present preliminary science results from an implementation of the algorithm as applied to an oligarchic migration scenario for forming hot Neptunes.  相似文献   

8.
The use of the extended phase space and time transformations for constructing efficient symplectic algorithms for the investigation of long term behavior of hierarchical few-body systems is discussed. Numerical experiments suggest that the time-transformed generalized leap-frog, combined with symplectic correctors, is one of the most efficient methods for such studies. Applications extend from perturbed two-body motion to hierarchical many-body systems with large eccentricities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Equations of motion, referred to as full body models, are developed to describe the dynamics of rigid bodies acting under their mutual gravitational potential. Continuous equations of motion and discrete equations of motion are derived using Hamilton’s principle. These equations are expressed in an inertial frame and in relative coordinates. The discrete equations of motion, referred to as a Lie group variational integrator, provide a geometrically exact and numerically efficient computational method for simulating full body dynamics in orbital mechanics; they are symplectic and momentum preserving, and they exhibit good energy behavior for exponentially long time periods. They are also efficient in only requiring a single evaluation of the gravity forces and moments per time step. The Lie group variational integrator also preserves the group structure without the use of local charts, reprojection, or constraints. Computational results are given for the dynamics of two rigid dumbbell bodies acting under their mutual gravity; these computational results demonstrate the superiority of the Lie group variational integrator compared with integrators that are not symplectic or do not preserve the Lie group structure.  相似文献   

10.
辛算法在动力天文中的应用(Ⅲ)   总被引:3,自引:0,他引:3  
刘林  赵长印 《天文学报》1994,35(1):51-66
文[1]和文[2]从哈密顿系统的整体结构保持一角度阐明了辛算法[3-6]的主要功能,本文将从定量的角度进一步表明辛算法的另一独特优点-可以控制天体运动沿迹误差的快速增长,并对可分离哈密顿系统的显式辛差分格式稍加改进,推广应用到一般动力系统,该系统含有小耗散项或小的不可分离项,计算结果表明,效果极佳,因此,辛算法与传统的数值解法相比,确有很多优点。  相似文献   

11.
Orbit propagation algorithms for satellite relative motion relying on Runge–Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge–Kutta-based integrators, even in the presence of atmospheric drag.  相似文献   

12.
We use classical definitions and results of differential geometry in studying properties of transformations depending on a small parameter, acting on differential systems. Hori's and Deprit's algorithms can be defined for these systems. A lemma is given to show these algorithms are equivalent. The so-called property of covariance is merely established. The canonical systems are then considered as associated with Hamiltonian vectorfields on symplectic manifolds. The property that the infinitesimal generator of a canonical transformation is an Hamiltonian vectorfield permits to establish separately the generality of Hori's and Deprit's algorithms. We suggest that the Hamiltonian vectorfield property can be extended to the generators of transformations depending on several parameters.  相似文献   

13.
We consider Sundman and Poincaré transformations for the long-time numerical integration of Hamiltonian systems whose evolution occurs at different time scales. The transformed systems are numerically integrated using explicit symplectic methods. The schemes we consider are explicit symplectic methods with adaptive time steps and they generalise other methods from the literature, while exhibiting a high performance. The Sundman transformation can also be used on non-Hamiltonian systems while the Poincaré transformation can be used, in some cases, with more efficient symplectic integrators. The performance of both transformations with different symplectic methods is analysed on several numerical examples.  相似文献   

14.
Recent progress in the theory and application of symplectic integrators   总被引:1,自引:0,他引:1  
In this paper various aspect of symplectic integrators are reviewed. Symplectic integrators are numerical integration methods for Hamiltonian systems which are designed to conserve the symplectic structure exactly as the original flow. There are explicit symplectic schemes for systems of the formH=T(p)+V(q), and implicit schemes for general Hamiltonian systems. As a general property, symplectic integrators conserve the energy quite well and therefore an artificial damping (excitation) caused by the accumulation of the local truncation error cannot occur. Symplectic integrators have been applied to the Kepler problem, the motion of minor bodies in the solar system and the long-term evolution of outer planets.  相似文献   

15.
This paper deals mainly with the application of the mixed leapfrog symplectic integrators with adaptive timestep to a conservative post-Newtonian Hamiltonian formulation with canonical spins for spinning compact binaries. The adaptive timestep depends on the two body separation r and the magnitude of the spins. Various numerical tests including a chaotic high-eccentricity orbit show that the fixed step symplectic integrators lost drastically the good long term behaviour in the test cases with large eccentricity, the adaptive timestep integrator is always superior to the constant step in the integral precision.  相似文献   

16.
In this work we reveal for the first time that in the three dipole problem only asymmetric periodic orbits exist.For these periodic orbits — planar and three dimensional — of a charged particle moving under the influence of the electromagnetic field of the three dipoles we give their symplectic relations using the Hamiltonian formulation which is related to the symplectic matrix. Also we study the properties of the symplectic matrix and we give the relations there are among the variations of a periodic solution. These relations have been used to check the accuracy of numerical integration of equations of first order variations.  相似文献   

17.
Using a Newtonian model of the Solar System with all 8 planets, we perform extensive tests on various symplectic integrators of high orders, searching for the best splitting scheme for long term studies in the Solar System. These comparisons are made in Jacobi and heliocentric coordinates and the implementation of the algorithms is fully detailed for practical use. We conclude that high order integrators should be privileged, with a preference for the new $(10,6,4)$ method of Blanes et al. (2013).  相似文献   

18.
几类辛方法的数值稳定性研究   总被引:1,自引:0,他引:1  
刘福窑  伍歆  陆本魁 《天文学报》2006,47(4):418-431
主要对一阶隐式Euler辛方法M1、二阶隐式Euler中点辛方法M2、一阶显辛Euler方法M3和二阶leapfrog显辛积分器M4共4种辛方法及一些组合算法进行了通常意义下的线性稳定性分析.针对线性哈密顿系统,理论上找到每个数值方法的稳定区,然后用数值方法检验其正确性.对于哈密顿函数为实对称二次型的情况,为了理论推导便利,特推荐采用相似变换将二次型的矩阵对角化来研究辛方法的线性稳定性.当哈密顿分解为一个主要部分和一个小摄动次要部分且二者皆可积时,无论是线性系统还是非线性系统,这种主次分解与哈密顿具有动势能分解相比,明显扩大了辛方法的稳定步长范围.  相似文献   

19.
The problem of the existence of normal forms for symplectic maps inR 2n is analyzed using a technique based on the generating functions. We discuss extensively the case of a map with an elliptic fixed point: both the resonant and non resonant cases are presented.Explicit algorithms to calculate the analytic expansions of the normal forms and the associated canonical transformation are also provided.  相似文献   

20.
We consider numerical integration of nearly integrable Hamiltonian systems. The emphasis is on perturbed Keplerian motion, such as certain cases of the problem of two fixed centres and the restricted three-body problem. We show that the presently known methods have useful generalizations which are explicit and have a variable physical timestep which adjusts to both the central and perturbing potentials. These methods make it possible to compute accurately fairly close encounters. In some cases we suggest the use of composite (instead of symplectic) alternatives which typically seem to have equally good energy conservation properties.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号