共查询到17条相似文献,搜索用时 78 毫秒
1.
夏季东亚高空西风急流气候特征分析 总被引:2,自引:0,他引:2
利用NCEP/NCAR全球再分析风场资料定义了西风急流强度指数和位置指数,然后利用EOF方法对西风急流进行了进一步的分析,分析了高空西风急流的空间分布特征,从强度和位置两方面分析了西风急流与东亚环流及其与海温的关系。分析表明: EOF第一模态反映了东亚高空急流的位置指数,第二模态反映了高空急流的强度指数。东亚高空急流与对流层大气环流包括南亚高压,西太平洋副热带高压,东亚夏季风存在着密切关系,其气候变化与热带副热带东太平洋、印度洋海温密切相关。 相似文献
2.
利用1979-2013年NCEP/NCAR再分析资料研究了东亚副热带西风急流的变化特征。结果表明:东亚副热带西风急流中心位置、强度有明显的季节变化,冬季偏东偏南、强度最强,夏季偏北偏西、强度最弱。冬半年东亚副热带西风急流南界、北界年际变化的幅度大,夏半年幅度较小。冬季、春季东亚副热带西风急流范围较大,秋季、夏季小,一年内,偏大年或偏小年的出现不具有季节的连续性。 相似文献
3.
东亚副热带西风急流变化多模式模拟结果分析 总被引:4,自引:2,他引:4
利用政府间气候变化委员会第四次评估报告(IPCC AR4)中等强度温室气体排放情景试验(SRES A1B)多个耦合模式的输出结果,通过多模式集合的方法分析全球变暖背景下东亚副热带西风急流的变化特征,发现在多模式集合平均结果中,随着温室气体增多、温室效应进一步加剧,冬季急流强度增强,急流位置向北移动,夏季急流强度也呈现出增强的趋势,位置却向南移动。在全球变暖背景下,冬季北半球从低纬到中高纬度对流层中高层温度将增加,但低纬增温强、高纬增温弱,导致副热带地区温度梯度增加,夏季增温幅度比冬季大,且强增温区向北移,造成急流轴北侧区域温度梯度增大,并通过热成风关系使得急流区纬向风增强。 相似文献
4.
利用NCEP/NCAR月平均再分析资料,采用奇异值分解方法分析200 hPa纬向风场与东亚地表加热场的空间耦合变化特征,揭示影响东亚副热带西风急流位置及强度变化的加热关键区域。研究结果表明,冬季西太平洋黑潮暖流区是表面感热、潜热通量场的大值区,其加热强度主要影响东亚副热带西风急流的强度变化,当加热增强(减弱)时,急流加强(减弱)。热带和副热带地区地表加热的反相变化对应纬向风的整体一致变化,且影响关键区在热带地区, 这种耦合分布型主要体现为年代际的变化特征。夏季,海陆感热加热差异主要影响中低纬纬向风的变化,而影响急流位置南北移动的加热关键区位于阿拉伯海及印度半岛北部,这种加热分布体现感热的局地性变化,可能与高原大地形分布有关。由于夏季降水的不均匀性,潜热加热与200 hPa纬向风场的耦合关系较为复杂。通过分析加热异常年的环流形势差异发现,对流层中上层经向温差对地表加热场异常变化的响应是导致高层纬向风变化的原因,这种地面加热变化导致高层温度场及流场的响应可通过热力适应理论得到较好的解释。 相似文献
5.
利用1980—2010年的NCEP/NCAR再分析资料与江淮地区44个站逐日降水资料,分析了江淮地区1980—2010年梅雨期(6月16日—7月15日)降水的基本空间分布型及其与东亚副热带西风急流的关系。结果表明,江淮梅雨降水的第一分布型为"南正(负)北负(正)",该型受副热带高空西风急流位置的影响,急流位置偏南(北),则雨带位于江淮南(北)部地区;第二分布型为"中间负(正),两边正(负)",该型受副热带高空西风急流强度的影响,急流强度异常偏弱(强),则雨带位于江淮地区西北、东南部(中部)。合成分析表明,高空急流位置异常偏南时,500 h Pa副高偏弱、偏南,850 h Pa江淮南部地区为水汽、风场辐合区,高低空配置有利于降水呈"南正北负"的分布型。高空急流强度异常偏弱时,从我国江淮中东部地区至日本南部,500 h Pa上无明显垂直运动,850 h Pa上有水汽和风场的辐散区,高低空配置有利于降水呈"中间负,两边正"的分布型。 相似文献
6.
一个气候系统模式FGCM0对东亚副热带西风急流季节变化的模拟 总被引:2,自引:1,他引:2
对IAP/LASG气候系统模式试验版(FGCM0)模拟对流层上层东亚副热带西风急流季节变化的能力进行评估, 分析FGCM0模拟的东亚副热带西风急流季节变化与NCEP/NCAR再分析资料的差异及其与对流层大气南北温差的关系.结果表明, FGCM0模拟的冬季和夏季西风急流垂直结构、水平结构和季节变化与NCEP/NCAR再分析资料基本一致, 但FGCM0模拟的东亚副热带西风急流在高原附近地区冬季和夏季都偏强, 沿115°E中国大陆地区上空模拟的急流强度冬季偏弱, 夏季明显偏强.夏季FGCM0模拟的急流中心位于高原东北部的40°N附近地区, 强度偏强, 位置偏东, 而此时NCEP/NCAR再分析资料中的急流中心却位于高原北侧.此外, FGCM0模拟的急流在5月份的北移和8月份的最北位置上与NCEP/NCAR再分析资料差异较大.分析副热带西风急流与对流层南北温差的季节变化发现, 急流出现的位置总是对应着对流层南北温度差较大区域, 与再分析资料相比, FGCM0模拟的温度差在冬季基本一致, 夏季差异较大.与降水的模拟相联系发现, FGCM0模拟得到的与实际不一致的偏西偏北的强降水中心与200 hPa上的东亚副热带急流位置和强度不合理具有密切关系.相关分析表明, 冬季西风急流强度与日本南部海区的感热通量、夏季与青藏高原地区的地面感热通量有明显的正相关关系, 而FGCM0能够较好地模拟冬季西风急流强度与地面感热通量之间的相关关系, 但模拟夏季青藏高原地区感热通量和副热带西风急流之间相关关系的能力相对较差, 夏季西风急流强度与OLR之间却有一定的关系.由于与强降水区相联系的OLR低值区对应着较大的对流凝结加热, 再加上模式中位于青藏高原东南部较大的地面感热加热, 增强了对流层的南北向温度差, 进而影响东亚副热带急流强度和位置.因此, FGCM0模拟的夏季副热带急流位置和强度偏差与高原附近地区的地面感热加热、大气射出长波辐射等的模拟偏差具有密切的关系. 相似文献
7.
FGOALS模式对梅雨期东亚副热带西风急流变化特征的模拟 总被引:1,自引:0,他引:1
中国科学院大气物理研究所参与CMIP5项目的海—陆—气耦合气候系统模式(FGOALS),能较好地模拟东亚副热带西风急流时空变化特征。FGOALS模式输出的1960~2005年风场再现了梅雨期东亚副热带西风急流气候态的三维结构,模拟出以120°E为界的急流海陆分布型,与NCEP/NCAR再分析资料风场空间分布一致,但FGOALS模式模拟的急流中心强度偏弱、位置偏北偏西。FGOALS模式也模拟出了ENSO年际演变过程中的海陆空间分布型,但对ENSO背景下西风急流强度、位置和形态演变过程的模拟与NCEP/NCAR再分析资料存在较大差异。基于热成风原理、地转风关系和波活动通量等研究了模式模拟急流位置和强度偏差产生的可能原因:FGOALS模式模拟的青藏高原加热效应偏弱、低纬度对流活动偏弱,导致对流层中上层上升运动偏弱和潜热加热减弱,使得中低纬度对流层中上层温度出现冷偏差、南亚高压偏弱,温度经向梯度和南亚高压北侧气压梯度力偏弱以及大气内部动力作用偏弱,从而造成急流中心强度和位置出现偏差。梅雨期西风急流空间分布型与长江中下游强降水落区有着密切联系,FGOALS模式模拟的西风急流中心强度偏弱和位置偏北偏西,模式输出的长江中下游地区降水量与观测值相比偏少。此外,FGOALS模式对ENSO背景下大气环流异常的模拟有待改善。 相似文献
8.
ENSO事件对东亚副热带西风急流影响的诊断分析 总被引:4,自引:10,他引:4
本文利用NCEP/NCAR月平均再分析资料,用合成分析和相关分析方法就ENSO事件对东亚副热带西风急流的影响进行诊断分析.主要结论为:El Nino年冬季200 hPa东亚副热带西风急流主要在急流出口区纬向风有正距平,急流增强东扩.而La Nina年冬季急流在急流出口区纬向风有负距平,急流减弱西移.El Nino年夏季急流增强,主要在急流区内的偏南部纬向风有正距平.La Nina年夏季急流减弱,主要在急流区内的偏南部纬向风有负距平;相关分析表明东亚副热带西风急流冬、夏季纬向风与热带中东太平洋冬、夏季海表温度有显著的相关.研究表明,ENSO年冬、夏季对流层中上层有较大的气温异常,并由此产生大的经向温度梯度的异常,这可能是ENSO事件影响东亚副热带西风急流的原因之一. 相似文献
9.
基于中国科学院大气物理所大气环流模式IAP AGCM4.0总共30年(1979~2008年)的模拟结果,评估了IAP AGCM4.0模式对热带大气季节内振荡的模拟能力。分析结果表明IAP AGCM4.0模式可以在一定程度上模拟出热带大气季节内振荡的主要时空谱结构特征,在周期30~80天处存在明显的谱能量中心;模式模拟的季节内振荡东传的主要特征与观测基本一致,东移波的能量远大于西移波。基于RMM指数(All-season Real-time Multivariate MJO Index)的分析表明,模式模拟的850 h Pa和200 h Pa季节内尺度风场和对流活动在赤道地区的空间分布与观测基本一致。但与观测相比,模式模拟的热带大气季节内振荡的周期较短,东传速度快于观测,虚假的西传特征过强,对流活跃区域范围较小、强度较弱。就非绝热加热而言,模式模拟结果与再分析资料比较接近,但最大加热在印度洋和西太平洋地区出现的位相较晚。进一步分析表明,模式中影响对流触发的相对湿度阈值(RHc)的不同取值(RHc分别取为85%、90%、95%和100%),可以显著影响热带大气非绝热加热垂直廓线,从而影响模式对热带大气季节内振荡的模拟;当对流触发相对湿度阈值取为90%时,IAP AGCM4.0模式对热带大气季节内振荡模拟的能力相对最好,非绝热加热垂直廓线在不同位相的分布特征也与再分析资料最为接近。这说明模式对流参数化方案中不同参数的合适选取,可以改进模式对热带大气季节内振荡的模拟能力。 相似文献
10.
分析了7月东亚高空西风急流北跳和急流中心西移时我国雨带的变化特征,发现急流北跳与长江中下游梅雨结束有很好的对应关系;急流中心西移则与长江中下游梅雨结束无对应关系,但急流中心西移相对于急流北跳发生的早晚对雨带北移过程有重要影响:在急流中心西移晚于急流北跳发生年份,雨带北移依次为长江中下游地区—淮河流域—黄淮地区逐渐北推,其他年份雨带则从长江流域直接北跳至黄淮地区。进一步分析表明:(1)急流北跳和急流中心西移引起中纬度大气环流发生显著变化,从而引起西太平洋水汽输送发生显著变化,孟加拉湾水汽输送无变化。(2)急流北跳和急流中心西移时大气环流调整不同,导致来自西太平洋的水汽输送变化不同,进而对雨带北移产生不同的影响。急流中心西移相对于急流北跳发生时间早晚不同,大气环流调整过程和水汽输送调整过程也不同,使得雨带北推进程不同。 相似文献
11.
The Relationship between the East Asian Subtropical Westerly Jet and Summer Precipitation over East Asia as Simulated by the IAP AGCM4.0 下载免费PDF全文
Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes. 相似文献
12.
Seasonal Variations of the East Asian Subtropical Westerly Jet and the Thermal Mechanism 总被引:3,自引:0,他引:3
The seasonal variations of the intensity and location of the East Asian subtropical westerly jet (EAWJ) and the thermal mechanism are analyzed by using NCEP/NCAR monthly reanalysis data from 1961 to 2000. It is found that the seasonal variation of the EAWJ center not only has significant meridional migration, but also shows the rapid zonal displacements during June-July. Moreover, there exists zonal inconsistency in the northward shift process of the EAWJ axis. Analysis on the thermal mechanism of the EAWJ seasonal variations indicates that the annual cycle of the EAWJ seasonal variation matches very well with the structure of the meridional difference of air temperature, suggesting that the EAWJ seasonal variation is closely related to the inhomogeneous heating due to the solar radiation and the land-sea thermal contrast. Through investigating the relation between the EAWJ and the heat transport, it is revealed that the EAWJ weakens and shifts northward during the warming period from wintertime to summertime, whereas the EAWJ intensifies and shifts southward during the cooling period from summertime to wintertime. The meridional difference of the horizontal heat advection transport is the main factor determining the meridional temperature difference. The meridional shift of the EAWJ follows the location of the maximum meridional gradient of the horizontal heat advection transport. During the period from April to October, the diabatic heating plays the leading role in the zonal displacement of the EAWJ center. The diabatic heating of the Tibetan Plateau to the mid-upper troposphere leads to the rapid zonal displacement of the EAWJ center during June-July. 相似文献
13.
Seasonal Variation of the East Asian Subtropical Westerly Jet and Its Association with the Heating Field over East Asia 总被引:3,自引:0,他引:3
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration. 相似文献
14.
东亚副热带西风急流位置变化与亚洲夏季风爆发的关系 总被引:1,自引:0,他引:1
利用1961~2000年的NCEP/NCAR候平均再分析资料,初步探讨了季节转换期间东亚副热带西风急流南北和东西向位置变化与亚洲季风爆发之间的联系。结果表明,亚洲夏季风爆发伴随着东亚副热带西风急流轴线的北跳和急流中心西移,急流轴北跳至35°N以北的青藏高原上空,南支西风急流消失,亚洲季风环流形势建立。南海季风爆发早年,低纬的东风向北推进的时间早,到达的纬度偏北,中纬的西风急流强度偏弱,季风爆发晚年则相反。同时,南海夏季风爆发早年,青藏高原上空急流核出现较早,西太平洋上空急流核减弱较快,急流中心“西移”较早。而在南海夏季风爆发晚年,西太平洋上空的急流核减弱较迟,青藏高原上空急流核形成偏晚,急流中心“西移”较迟。此外,急流中心东西向位置和强度变化与江淮流域梅雨的开始和结束也有密切关系。 相似文献
15.
初夏至盛夏东亚副热带西风急流突变早晚与东亚环流异常的关系 总被引:1,自引:0,他引:1
利用1961-2004年NCEP/NCAR再分析逐候资料和全国160站月平均降水资料,分析了初夏至盛夏东亚副热带急流北跳和急流中心西移发生早晚对7月东亚大气环流和我国降水的影响。结果表明,急流北跳时间与7月长江中下游地区降水异常正相关,急流中心西移时间则与7月淮河流域降水异常正相关,与华北和河套地区降水异常负相关。急流北跳时间与南亚高压和西太平洋副热带高压南北位置异常及高纬贝加尔湖以东高压脊强度相关;而急流中心西移时间与南亚高压和西太平洋副热带高压的东西伸展及贝加尔湖以西高压脊强度相关,在急流中心西移偏晚年,南亚高压西缩,贝加尔湖西南侧高压脊增强,南下至华北和河套地区冷空气偏强,且西太平洋副热带高压东撤,冷暖空气在淮河流域交汇,使得华北和河套地区降水减少而淮河流域降水偏多;偏早年情况与偏晚年情况相反。 相似文献
16.
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH) and the East Asian westerly jet(EAJ) in summer on interannual timescales. The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward) extension of the WNPSH and the southward(northward) shift of the EAJ, which is consistent with the general correspondence between their variations. The out-of-phase configuration includes the residual cases. We find that the in-phase configuration manifests itself as a typical meridional teleconnection. For instance, there is an anticyclonic(cyclonic) anomaly over the tropical western North Pacific and a cyclonic(anticyclonic) anomaly over the mid-latitudes of East Asia in the lower troposphere. These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ. By contrast, for the out-of-phase configuration, the mid-latitude cyclonic(anticyclonic) anomaly is absent, and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension. Correspondingly, significant rainfall anomalies move northward to North China and the northern Korean Peninsula. Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO, with strong and significant sea surface temperature(SST) anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter. This is sharply different from the in-phase configuration, for which the tropical SSTs are not a necessity. 相似文献
17.
利用1979—2003年NCEP/NCAR月平均再分析资料, 探讨夏季 (6—8月) 200 hPa东亚西风急流扰动异常与南亚高压和西太平洋副热带高压的关系。研究指出:夏季200 hPa东亚西风急流扰动动能加强 (减弱), 东亚西风急流位置偏南 (偏北)、强度偏强 (偏弱); 东亚西风急流扰动动能强弱不仅与北半球西风急流强弱和沿急流的定常扰动有关, 而且还与东亚地区高、中、低纬南北向的扰动波列有关, 亚洲地区是北半球中纬度环球带状波列异常最大的区域。夏季200 hPa东亚西风急流扰动动能加强 (减弱), 南亚高压的特征为位置偏东 (偏西)、强度加强 (减弱); 西太平洋副热带高压的特征为位置偏南 (偏北)。东亚环流特别是500 hPa西太平洋副热带高压对东亚西风带扰动异常的响应由高空东亚西风急流南侧的散度场及其对流层中下层热带和副热带地区的垂直速度距平场变化完成。 相似文献