首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chagos-Laccadive ridge (CLR) is a prominent aseismic, volcanic ridge in the northern Indian ocean. The ridge, together with the Southern Mascarene plateau (SMP), to which it is genetically related, is considered as a volcanic trace of the Reunion hotspot. We have examined the isostatic compensation of the CLR through transfer function analysis of gravity and bathymetry data along seven profiles. The analysis suggests that the CLR is compensated locally, with an Airy crustal thickness (Tc) of 20 km. The rather low elastic plate thickness (Te) of about 4 km implies that the volcanism of the ridge took place very near a spreading centre. The proximity of the Chagos fracture zone indicates that the emplacement was probably near a spreading centre-transform junction.  相似文献   

2.
超慢速扩张的北冰洋Gakkel洋中脊具有六个沿扩张方向的线性基底隆起(本文编号为A—F).这些线性基底隆起在中轴两侧的地球物理场和地壳结构呈现不同程度的非对称性.本文利用Gakkel洋中脊的地形、空间重力异常(FAA)和航空磁力数据,计算了它的扩张速率、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.根据中轴两侧地形和地壳厚度的对称关系,我们将六个基底隆起分为对称型和非对称型两种类型.整体上,B、D和F区基底隆起在中轴两侧的地形和地壳厚度的非对称幅值(两侧差值的绝对值)较小,其中地形的非对称幅值分别为~157m、~125m、~208m,地壳厚度的非对称幅值分别为~1km、~0.06km、~0.3km;而A、C和E区的非对称幅值较大,其中地形的非对称幅值分别为~510m、~410m、~673m,地壳厚度的非对称幅值分别为~2km、~2.5km、~1.1km.我们因此推断B、D和F区具有相对对称的地壳结构,而A、C和E区具有非对称的地壳结构.根据A、C和E区中轴两侧非均衡地形的对称关系和非对称地形的补偿状态,推测A区的非对称性可能是由岩浆分配不均所导致;而C区和E区的非对称性可能是由构造断层作用使断层下盘向上抬升变薄所导致.我们进一步推测洋中脊走向的改变可能使得构造作用更易集中于基底隆起的一侧.  相似文献   

3.
Measurements of the seafloor deformation under ocean waves (compliance) reveal an asymmetric lower crustal partial melt zone (shear velocity less than 1.8 km/s) beneath the East Pacific Rise axis between 9° and 10°N. At 9°48′N, the zone is less than 8 km wide and is centered beneath the rise axis. The zone shifts west of the rise axis as the rise approaches the westward-stepping 9°N overlapping spreading center discontinuity and is anomalously wide at the northern tip of the discontinuity. The ratio of the compliance determined shear velocity to the compressional velocities (estimated by seismic tomography) suggests that the melt is well-connected in high-aspect ratio cracks rather than in isolated sills. The shear and compressional velocities indicate less than 18% melt in the lower crust on average. The compliance measurements also reveal a separate lower crustal partial melt zone 10 km east of the rise axis at 9°48′N and isolated melt bodies near the Moho beneath four of the 39 measurement sites (three on-axis and one off-axis). The offset of the central melt zone from the rise axis correlates strongly with the offset of the overlying axial melt lens and the inferred center of mantle melting, but its shape appears to be controlled by crustal processes.  相似文献   

4.
The gravity response and crustal shortening in the Himalayan belt are modeled in detail for the first time in the NW Himalaya. The Bouguer gravity anomaly along a ~450-km-long (projected) transect from the Sub-Himalaya in the south to the Karakoram fault in the north across the Indus-Tsangpo Suture Zone is modeled using spectral analysis, wavelet transform and forward modeling. The spectral analysis suggests three-layer interfaces in the lithosphere at 68-, 34- and 11-km depths corresponding to the Moho, the Conrad discontinuity and the Himalayan decollement thrust, respectively. The coherence, admittance and cross spectra suggest crustal shortening because of convergence compensated by lithospheric folding at 536- and 178-km wavelength at the Moho and the upper-crustal level. An average effective elastic thickness of around 31 km is calculated using the coherence method. The gravity data are modeled to demarcate intracrustal to subcrustal regional thrust/fault zones. The geometrical constraints of these faults are obtained in the space scale domain using the wavelet transform, showing good correlation with the major tectonic boundaries. The crustal configuration along the transect shows how the Moho depth increases from 45 to 80 km towards the north with the locus of flexure of the Indian crust beneath the Higher Himalayan zone. The combination of forward modeling and wavelet analysis gives insight into the subsurface extent and geometry of regional structures across the NW Himalaya.  相似文献   

5.
Gravity and bathymetric results from the 1983 Canadian Expedition to Study the Alpha Ridge (CESAR) have outlined positive free-air anomalies centred on the continental break off Ellesmere Island characteristic of normal Atlantic-type passive margins. These data confirm implications derived from depth-to-magnetic basement calculations that the ridge may not be structurally connected to the continent. Across the Alpha Ridge magnetic and gravity anomalies mimic the bathymetry. The magnetic anomalies apparently are not caused, to any great extent, by internal structures or magnetic reversals, but rather seem to result simply from variations in depths to a homogenous magnetic structure. The gravity anomalies across a 500 km wide section of the Alpha Ridge can be almost completely accounted for by topography, shallow sedimentary fill and a simple two-tier crustal model. This implies an extraordinary lateral density homogeneity unknown in continental structures of comparable size. Gravity models show the crustal thickness to increase gradually from 20 km at the Marvin Spur to 38 km at the ridge crest. A comparison of this model with a gravity model of the continental-type Lomonosov Ridge, which has a thickness of about 25 km, indicates that, at the same thickness of 25 km, the average crustal density of the Alpha Ridge is 0.08 Mg/m3 greater. These gravity constraints, the unusually homogenous seismic velocity structure revealed by the CESAR studies, the homogeneous magnetic structure, and the extraordinary high intensity satellite magnetic anomaly associated with the Alpha Ridge, indicate that the ridge may be composed of a large pile of mafic rock, possibly unique on this planet.  相似文献   

6.
用于区域重力场定量解释的多尺度刻痕分析方法   总被引:6,自引:4,他引:2       下载免费PDF全文
本文介绍一个把小波多尺度分析、表面刻痕分析以及位场频率域解释理论和反演方法结合起来的数据处理、反演解释和信息提取的方法系统.这一方法系统简称为区域重力场多尺度刻痕分析方法,应用于刻画地壳分层的三维密度结构、地壳变形带分布和构造单元分区.多尺度刻痕分析包含频率域重力场场源分层、重力场小波变换多尺度分解、场源分层深度及密度扰动反演、分层刻痕分析和构造边界定位四个子系统.文中扼要地介绍这四个子系统基本原理、方法技术及应用效果.从地球物理探测到大地构造学发现,是一个多学科综合研究的探索过程.要取得重大研究成果,必须研发和组合来自不同学科的多个新方法技术,使多学科综合研究有宽厚的理论支撑.本文介绍的四个子系统组合的理论支撑分别来自应用数学、地球物理学和信息科学.  相似文献   

7.
从重力场识别与提取地壳变形带信息的方法研究   总被引:7,自引:5,他引:2       下载免费PDF全文
表面形貌识别是指用具体的参数表征表面各区段几何形态及属性并最终对不同类型的表面形貌进行识别,表面刻痕识别是其中的一种.以随机过程理论为基础的表面刻痕识别技术可以确切地识别表面形貌的各项特征,其各阶谱矩及统计不变量可以对表面的刻痕以及各向异性进行详细地刻画.区域重力场上的各向异性刻痕主要反映地壳线状变形带,它们常常是区域大地构造单元的边界.本文用重力场研究地壳变形带信息识别方法,将二阶谱矩、统计不变量等参数赋予一定的地质构造含义,并定义了脊形化系数、边界脊形化系数等,从而更详细地表征地壳变形带及大陆构造单元边界信息.理论模型与实际数据试验结果均表明,地壳变形带信息识别方法不但对重力场上地壳变形产生的线形刻痕进行了有效的刻画,而且提取出的刻痕信息,可为大陆构造单元划分提供客观依据.  相似文献   

8.
Specific features of the bottom topography structure and the character of morphostructural segmentation of the rift zone of the Reykjanes Ridge change substantially along the ridge strike with increasing distance from Iceland’s hotspot. A clearly pronounced regularity of changes is observed in the rift zone’s morphology from the axial uplift (in the northern part of the ridge) to the rift valleys (in the southern part of the ridge) through an intermediate or transitional type of morphology. The results of numerical modeling showed that changes in the rift zone’s morphology along the Reykjanes Ridge strike are largely caused by changes in the degree of mantle heating and depend on the intensity of magma supply. It is shown that under conditions of ultraslow spreading, it is these parameters that control the presence or absence of crustal magma chambers, as well as the thickness of the effectively-elastic layer of the axial lithosphere. The experimental modeling of topography-forming deformations and structuring on the Reykjanes Ridge showed that under oblique extension, specific features of the formation of axial fractures and the character of their segmentation mainly depend on the thickness of the axial lithosphere, its heating zone width, and the kinematics of spreading. The experiments also showed that the tendency of fractures to develop obliquely to the extension axis is caused by the action of the inclined zone of the location of the deformation, and shear deformations play a substantial role in the lithosphere’s destruction as the inclination angle increases.  相似文献   

9.
We report a comprehensive morphological, gravity and magnetic survey of the oblique- and slow-spreading Reykjanes Ridge near the Iceland mantle plume. The survey extends from 57.9°N to 62.1°N and from the spreading axis to between 30 km (3 Ma) and 100 km (10 Ma) off-axis; it includes 100 km of one arm of a diachronous ‘V-shaped' or ‘chevron' ridge. Observed isochrons are extremely linear and 28° oblique to the spreading normal with no significant offsets. Along-axis there are ubiquitous, en-echelon axial volcanic ridges (AVRs), sub-normal to the spreading direction, with average spacing of 14 km and overlap of about one third of their lengths. Relict AVRs occur off-axis, but are most obvious where there has been least axial faulting, suggesting that elsewhere they are rapidly eroded tectonically. AVRs maintain similar plan views but have reduced heights nearer Iceland. They are flanked by normal faults sub-parallel to the ridge axis, the innermost of which occur slightly closer to the axis towards Iceland, suggesting a gradual reduction of the effective lithospheric thickness there. Generally, the amplitude of faulting decreases towards Iceland. We interpret this pattern of AVRs and faults as the response of the lithosphere to oblique spreading, as suggested by theory and physical modelling. An axial, 10–15 km wide zone of high acoustic backscatter marks the most recent volcanic activity. The zone's width is independent of the presence of a median valley, so axial volcanism is not primarily delimited by median valley walls, but is probably controlled by the lateral distance that the oblique AVRs can propagate into off-axis lithosphere. The mantle Bouguer anomaly (MBA) exhibits little mid- to short-wavelength variation above a few milliGals, and along-axis variations are small compared with other parts of the Mid-Atlantic Ridge. Nevertheless, there are small axial deeps and MBA highs spaced some 130 km along-axis that may represent subdued third-order segment boundaries. They lack coherent off-axis traces and cannot be linked to Oligocene fracture zones on the ridge flanks. The surveyed chevron ridge is morphologically discontinuous, comprising several parallel bands of closely spaced, elevated blocks. These reflect the surrounding tectonic fabric but have higher fault scarps. There is no evidence for off-axis volcanism or greater abundance of seamounts on the chevron. Free-air gravity over it is greater than expected from the observed bathymetry, suggesting compensation via regional rather than pointwise isostasy. Most of the observed variation along the ridge can be ascribed to varying distance from the mantle plume, reflecting changes in mantle temperature and consequently in crustal thickness and lithospheric strength. However, a second-order variation is superimposed. In particular, between 59°30′N and 61°30′N there is a minimum of large-scale faulting and crustal magnetisation, maximum density of seamounts, and maximum axial free-air gravity high. To the north the scale of faulting increases slightly, seamounts are less common, and there is a relative axial free-air low. We interpret the 59°30′N to 61°30′N region as where the latest chevron ridge intersects the Reykjanes Ridge axis, and suggest that the morphological changes that culminate there reflect a local temperature high associated with a transient pulse of high plume output at its apex.  相似文献   

10.
Geologic discontinuities across the Cheyenne Belt of southeastern Wyoming have led to interpretations that this boundary is a major crustal suture separating the Archaean Wyoming Province to the north from accreted Proterozoic island arc terrains to the south. Gravity profiles across the Cheyenne Belt in three Precambrian-cored Laramide uplifts show a north to south decrease in gravity values of 50–100 mgal. These data indicate that the Proterozoic crust is more felsic (less dense) and/or thicker than Archaean crust. Seismic refraction data show thicker crust (48–54 km) in Colorado than in Wyoming (37–41 km). We model the gravity profiles in two ways: 1) thicker crust to the south and a south-dipping ramp in the Moho beneath and just south of the Cheyenne Belt; 2) thicker crust to the south combined with a mid-crustal density decrease of about 0.05 g/cm3. Differences in crustal thickness may have originated 1700 Ma ago because: 1) the gravity gradient is spatially related to the Cheyenne Belt which has been immobile since about 1650 Ma ago; 2) the N-S gradient is perpendicular to the trend of gravity gradients associated with local Laramide uplifs and sub-perpendicular to regional long-wavelength Laramide gradients and is therefore probably not a Laramide feature. Thus, gravity data support the interpretation that the Cheyenne Belt is a Proterozoic suture zone separating terrains of different crustal structure. The gravity “signature” of the Cheyenne Belt is different from “S”-shaped gravity anomalies associated with Proterozoic sutures of the Canadian Shield which suggests fundamental differences between continent-continent and island arc-continent collisional processes.  相似文献   

11.
Plate boundary geometry likely has an important influence on crustal production at mid-ocean ridges. Many studies have explored the effects of geometrical features such as transform offsets and oblique ridge segments on mantle flow and melting. This study investigates how triple junction (TJ) geometry may influence mantle dynamics. An earlier study [Georgen, J.E., Lin, J., 2002. Three-dimensional passive flow and temperature structure beneath oceanic ridge-ridge-ridge triple junctions. Earth Planet. Sci. Lett. 204, 115–132.] suggested that the effects of a ridge–ridge–ridge configuration are most pronounced under the branch with the slowest spreading rate. Thus, we create a three-dimensional, finite element, variable viscosity model that focuses on the slowest-diverging ridge of a triple junction with geometry similar to the Rodrigues TJ. This spreading axis may be considered to be analogous to the Southwest Indian Ridge. Within 100 km of the TJ, temperatures at depths within the partial melting zone and crustal thickness are predicted to increase by ~ 40 °C and 1 km, respectively. We also investigate the effects of differential motion of the TJ with respect to the underlying mantle, by imposing bottom model boundary conditions replicating (a) absolute plate motion and (b) a three-dimensional solution for plate-driven and density-driven asthenospheric flow in the African region. Neither of these basal boundary conditions significantly affects the model solutions, suggesting that the system is dominated by the divergence of the surface places. Finally, we explore how varying spreading rate magnitudes affects TJ geodynamics. When ridge divergence rates are all relatively slow (i.e., with plate kinematics similar to the Azores TJ), significant along-axis increases in mantle temperature and crustal thickness are calculated. At depths within the partial melting zone, temperatures are predicted to increase by ~ 150 °C, similar to the excess temperatures associated with mantle plumes. Likewise, crustal thickness is calculated to increase by approximately 6 km over the 200 km of ridge closest to the TJ. These results could imply that some component of the excess volcanism observed in geologic settings such as the Terceira Rift may be attributed to the effects of TJ geometry, although the important influence of features like nearby hotspots (e.g., the Azores hotspot) cannot be evaluated without additional numerical modeling.  相似文献   

12.
Introduction The gravity anomaly is an indicator of the density distribution of the underground material. Therefore the gravity anomalies have been important data used for studying the deep crustal struc-ture for a long time. Many people have made detailed researches on the regional crustal structure inverted by Bouguer anomalies. In particular some empirical formulae and practical algorithms about the crustal thickness were brought forward, and a series of results were obtained (MENG, 1996)…  相似文献   

13.
To research the faults distribution and deep structures in the southern segment of Tan-Lu fault zone(TLFZ) and its adjacent area, this paper collects the Bouguer gravity data and makes separation by the multi-scale wavelet analysis method to analyze the crustal transverse structure of different depths. Meanwhile Moho interface is inversed by Parker variable density model. Research indicates that the southern segment of TLFZ behaves as a NNE-directed large-scale regional field gravity gradient zone, which separates the west North China-Dabie orogen block and the east Yangtze block, cutting the whole crust and lithosphere mantle. There are quite differences of density structures and tectonic features between both sides of this gradient belt. The sedimentary and upper crustal density structure is complex. The two east branches of TLFZ behave as linear gravity anomalous belt throughout the region, whereas the two west branches of TLFZ continue to extend after truncating the EW-trending gravity anomaly body. The lower crustal density structure is relatively simple. TLFZ behaves as a broad and gentle low abnormal belt, which reflects the Cretaceous-Paleogene extension environment caused graben structure. The two west branches of TLFZ, running through Hefei city, extend southward along the west margin of Feidong depression and pinch out in Shucheng area due to the high density trap occlusions in the south of Shucheng. The Feizhong Fault, Liu'an-Hefei Fault, and Feixi-Hanbaidu Fault intersect the two west branch faults of TLFZ without extending to the east. Recent epicenters are mainly located in conversion zones between the high-density and the low-density anomaly, especially in TLFZ and the junction of the faults, where earthquakes frequently occurred in the upper and middle crust. As strong earthquakes rarely occur in the southern segment of TLFZ, considering its deep feature of abrupt change of the Moho and intersections with many EW-trending faults, the hazard of strong earthquake cannot be ignored.  相似文献   

14.
The eastern Tibetan plateau has been getting more and more attention because it combines active faults, uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus, a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative (THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks, including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the Songpan-Garze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion, which is coincident with the flowing direction indicated from the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault.  相似文献   

15.
《Journal of Geodynamics》1999,27(4-5):609-622
The Laxmi Ridge is the most intriguing structural feature of the northeastern Arabian sea. It is char- acterized by unusual crustal structure and anomalous gravity signature. Though the earlier geophysical examinations provide some vital information about its crustal configuration, its origin and evolution have remained unsolved. Using the available seismic information, the present 2-D together with 3-D gravity modelings of the Laxmi Ridge crust:mantle system brought out a transitional layer between the depth of 11-22 km. This anomalous layer is not confined beneath the ridge axis but found to be present in the entire eastern basin and interpreted as a massive mafic intrusion beneath the region. Thickness of this layer at the base of the crust beneath the Laxmi Ridge decreases gradually towards the north-west. However, its extension towards the southeast and ultimate connection with the Chagos-Laccadive Ridge makes the western bound- ary of the magmatic crustal accretion along the west coast of India. It is suggested that the Deccan plume head mushrooming beneath the region has modified the crust with a huge magmatic intrusion. The then spreading centre coupled with the Deccan volcanic eruption is held responsible for the present day con- figuration of the Laxmi Ridge.  相似文献   

16.
We consider results from modeling the crustal and upper mantle velocity structure in Kamchatka by seismic tomography and compare these with gravity data and present-day tectonics. We found a well-pronounced (in the physical fields) vertical and lateral variation for the upper mantle and found that it is controlled by fault tectonics. Not only are individual lithosphere blocks moving along faults, but also parts of the Benioff zone. The East Kamchatka volcanic belt (EKVB) is confined to the asthenospheric layer (the asthenosphere lens) at a depth of 70–80 km; this lens is 10–20 km thick and seismic velocity in it is lower by 2–4%. The top of the asthenosphere lens has the shape of a dome uplift beneath the Klyuchevskoi group of volcanoes and its thickness is appreciably greater; overall, the upper mantle in this region is appreciably stratified. A low-velocity heterogeneity (asthenolith) at least 100 km thick has been identified beneath the Central Kamchatka depression; we have determined its extent in the upper mantle and how it is related to the EKVB heterogeneities. Gravity data suggest the development of a rift structure under the Sredinnyi Range volcanic belt. The Benioff zone was found to exhibit velocity inhomogeneity; the anomalous zones that have been identified within it are related to asthenosphere inhomogeneities in the continental and oceanic blocks of the mantle.  相似文献   

17.
Wide-angle seismic surveys performed in the last decade have clarified the 3-D crustal structure along the Nankai Trough. The geometry and velocity structure of the southwestern Japan subduction zone are now well constrained. Comparing these observations with the rupture distribution of historic great thrust earthquakes, it appears that the coseismic rupture occurred along plate boundaries deeper than the wedge/backstop boundary (the boundary between the Neogene-Quaternary accretionary wedge and the crust forming the backstop). From the view of spatial relationship, both rupture distributions of the last two large events and the crust forming the backstop are considerably retreated from the trough axis in the west and east off the Kii Peninsula. In both areas, seamount or ridge subduction is apparent in seismic results, geomorphological data and geomagnetic data. The landward indentation of the deformable backstop, which corresponds to the crustal block of old accreted sediments, may be formed by seamount subduction according to published results of sandbox modeling. In particular, the subducted seamount may be a structural factor affecting the recession of the crustal block forming the backstop.  相似文献   

18.
The Easter (Rapanui) microplate is a case example of a large dual spreading center system in a region where the fastest seafloor spreading on Earth is occurring today. Recent theoretical models of the tectonic evolution of dual spreading center systems have explored the effects of shear and rigid rotation on the boundaries and internal structure of microplates but the models must be critically constrained by improved relative motion and structural fabric data sets.During the January 1987 Rapanui expedition on the N/O “Jean Charcot” we conducted a Sea Beam/magnetics/ gravity survey of a portion of the microplate boundaries. The method that was used was to fully map selected portions of the boundaries in order to establish precise structural relationships. The northern terminus of the East Rift or eastern boundary of the microplate is expressed as a series of parallel NW-SE trending valleys including what appears to be, with 5890 m depth, the deepest active rift axis mapped in the Pacific today (Pito Rift).The northern end of the Pito Rift merges with an E-W to 083° narrow band of linear faults interpreted to be a transform fault between the Nazca and Easter (Rapanui) plates.The northern triple junction between the Easter (Rapanui), Nazca and Pacific plates is a RFF type with the two transform faults colinear along an approximately E-W direction.The southwestern boundary of the Easter (Rapanui) microplate is marked by a series of en-echelon offsets, outlined by depressions, which merge into an approximately E-W zone where shear must be predominant.The southern triple junction is a RRF junction with an overlapping ridge system.The structural data acquired during the survey provide strong constraints for kinematic models of the microplate. The structural data need to be combined with crustal age determinations in order to derive a model for the evolution of the microplate.  相似文献   

19.
Active volcanoes occur in at least two fundamentally different tectonic settings. Taphrogenic volcanoes are aligned along the mid-ocean fracture system which is characterized by a broad ridge of rugged relief, «tensional» horizontal stress components perpendicular to the ridge, shallow earthquakes in a zone vertically beneath the ridge crest, thin to normal occanic crust and low to normal seismic velocities in the uppermost mantle, positive free-air gravity anomalies, and high heat flow. Orogenic volcanoes are aligned along the mobile Pacific rim and Indonesian archipelago which are characterized by double or single arcuate ridges with a deep oceanic trench on the convex side, compressional horizontal stress components perpendicular to the arcs, shallow to deep earthquakes in a zone dipping from the trench to beneath the volcanoes and beyond, transitional crustal thicknesses and seismic velocities, parallel belts of negative and positive free-air gravity anomalies from the trench to the volcanic arc, and low heat flow from the trench. The diverse nature of most geophysical lineaments associated with volcanism suggests that magma generation is independent of these phenomena. The remaining correlation of shallow earthquakes with taphrogenic volcanocs and intermediate depth earthquakes with orogenic volcanoes suggests that active fracture systems reaching these depths can tap latent magma sources. Seismic evidence for a low velocity layer beginning 100 km beneath continents and 60 km beneath oceans gives independent support to this hypothesis.  相似文献   

20.
An enormous component of isostatic compensation(~?430±40mgal) is provided by subcrustal material beneath the neovolcanic zone of Iceland. Previously published values for the component of gravity contributed by anomalous mantle material beneath this region range from ?250 to ?140 mgal. These values are only a partial indication of the magnitude of the compensation mechanism. If one takes into account constraints on crustal thickness from seismic refraction studies and compares Iceland to less active tectonic regions near by, one obtains a mantle gravity effect of approximately?430±40mgal, which for a simple slab model leads to a vertically integrated mass deficit per unit surface area of 106 g/cm2. The effects of thermal expansion, solid-solid phase transitions and partial fusion can provide significant contributions to the total mass deficiency; however, none of these mechanisms alone seems sufficient to account for the entire anomaly.The relation of this mass anomaly to the evolution of the Iceland-Faeroe ridge is considered by examining two extreme end-members of a suite of possible evolutionary models for this region. The first of these is the case where, in time, the 106 g/cm2 mass deficit will be resorbed into the mantle with the effects of chemical segregation playing a minor role. The second case, which is preferred, involves a significant redistribution of material from the mantle such that basaltic melt segregated from high levels in the mantle accumulates and crystallizes in a zone at the base of the crust. In this latter model, if the Iceland-Faeroe ridge is considered to have evolved under a steady rate of magma production over the last 30–40 × 106 years, then underplating of the crust may account for its increasing thickness as it matures from 8–10 km in the neovolcanic zone to a value of approximately 32 km for the Iceland-Faeroe ridge. If we assume a 10% increase in density upon crystallization, thickening of the crust by 22 km through underplating by magma accumulation leads to an increase in mass per unit surface area of 0.6 × 106 g/cm2, and accounts for approximately 60% of the total mass difference in the mantle between Iceland and the Iceland-Faeroe ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号