首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
国家气候中心多模式解释应用集成预测   总被引:5,自引:1,他引:4       下载免费PDF全文
多模式集合和降尺度技术是提升模式预测能力的有效工具。该文对国家气候中心多模式解释应用集成预测 (MODES) 技术与业务应用现状进行了综合介绍。MODES采用欧洲中期天气预报中心、东京气候中心、美国国家环境预报中心和中国气象局国家气候中心4个气候业务季节预测模式输出场,利用EOF迭代、变形的典型相关分析、最优子集回归和高相关回归集成4种统计降尺度方法以及等权平均、经典超级集合等集成方法进行全国月及季节降水和气温预测。目前对MODES进行了夏季回报检验和约1年的实时业务应用。回报检验和业务应用表明,MODES对气温有较好的预测能力 (月预测平均PS评分为76),对降水有一定预测技巧 (月预测平均PS评分为68),具有短期气候预测业务应用价值。  相似文献   

2.
多模式集合优选方案在淮河流域夏季降水预测中的应用   总被引:3,自引:0,他引:3  
基于国家气候中心提供的1981—2010年4种季节气候预测模式的资料,将两种互为补充的降尺度因子挑选方案应用于淮河流域夏季降水预测,利用距平符号一致率ASCR、等级评定PG、距平相关系数ACC方法,评定了每种模式及其所采用的两种降尺度方法对淮河流域夏季降水的预测效果,并采用了一种优选方案进行多模式集合。结果表明,从4种模式的降水预测效果来看,NCEP_CFSv2和TCC_CPS1模式的评分较高,NCC_CGCM1和ECMWF_SYSTEM4模式相对较低;采用2种基于最优子集回归的降尺度方法后,NCC_CGCM1、TCC_CPS1和ECMWF_SYSTEM4模式的降尺度方法相对于模式降水预测为正订正,NCEP_CFSv2模式为负订正;将模式和降尺度预测方案进行优选,其集合平均的评分不仅高于模式降水预测的集合平均,也优于降尺度方法的集合平均,该方法发挥了不同模式的区域性优势,改进了原始集合平均的效果,为提高多模式解释应用水平提供了一种参考性方案。   相似文献   

3.
This study evaluates the UCLA-ETA regional model’s dynamic downscaling ability to improve the National Center for Environmental Prediction Climate Forecast System (NCEP CFS), winter season predictions over the contiguous United States (US). Spatial distributions and temporal variations of seasonal and monthly precipitation are the main focus. A multi-member ensemble means of 22 winters from 1982 through 2004 are included in the study. CFS over-predicts the precipitation in eastern and western US by as much as 45 and 90 % on average compared to observations, respectively. Dynamic downscaling improves the precipitation hindcasts across the domain, except in the southern States, by substantially reducing the excessive precipitation produced by the CFS. Average precipitation root-mean-square error for CFS and UCLA-ETA are 1.5 and 0.9 mm day?1, respectively. In addition, downscaling improves the simulation of spatial distribution of snow water equivalent and land surface heat fluxes. Despite these large improvements, the UCLA-ETA’s ability to improve the inter-annual and intra-seasonal precipitation variability is not clear, probably because of the imposed CFS’ lateral boundary conditions. Preliminary analysis of the cause for the large precipitation differences between the models reveals that the CFS appears to underestimate the moisture flux convergence despite producing excessive precipitation amounts. Additionally, the comparison of modeled monthly surface sensible and latent heat fluxes with Global Land Data Assimilation System land data set shows that the CFS incorrectly partitioned most of surface energy into evaporation, unlike the UCLA-ETA. These findings suggest that the downscaling improvements are mostly due to a better representation of land-surface processes by the UCLA-ETA. Sensitivity tests also reveal that higher-resolution topography only played a secondary role in the dynamic downscaling improvement.  相似文献   

4.
基于CFS模式的中国站点夏季降水统计降尺度预测   总被引:6,自引:2,他引:4  
刘颖  范可  张颖 《大气科学》2013,37(6):1287-1296
本研究针对中国夏季站点降水,研制建立了基于Climate Forecast System(CFS)实时预测数值产品及观测资料的统计降尺度预测系统。此预测系统选取了CFS模式中当年夏季500 hPa高度场和观测资料中前一年秋、冬季海表面温度场作为预测因子,两因子的关键区分别为泛东亚地区和热带太平洋地区。统计降尺度模型对1982~2011年中国夏季降水的回报效果较CFS模式原始结果显著提高,空间距平相关系数由0.03提高到0.31,时间相关系数在中国大部分地区显著提高,最大可达0.6。均方根误差较CFS模式原始结果明显降低,同时,此降尺度模型较好的回报出2011年汛期降水的距平百分率的空间分布型。  相似文献   

5.
The Climate Forecast Systems (CFS) datasets provided by National Centers for Environmental Prediction (NCEP), which cover the time from 1981 to 2008, can be used to forecast atmospheric circulation nine months ahead. Compared with the NCEP datasets, CFS datasets successfully simulate many major features of the Asian monsoon circulation systems and exhibit reasonably high skill in simulating and predicting ENSO events. Based on the CFS forecasting results, a downscaling method of Optimal Subset Regression (OSR) and mean generational function model of multiple variables are used to forecast seasonal precipitation in Guangdong. After statistical analysis tests, sea level pressure, wind and geopotential height field are made predictors. Although the results are unstable in some individual seasons, both the OSR and multivariate mean generational function model can provide good forecasting as operational tests score more than sixty points. CFS datasets are available and updated in real time, as compared with the NCEP dataset. The downscaling forecast method based on the CFS datasets can predict three seasons of seasonal precipitation in Guangdong, enriching traditional statistical methods. However, its forecasting stability needs to be improved.  相似文献   

6.
现阶段的动力气候模式尚不能满足东亚区域气候预测的实际需求,这就需要动力和统计相结合的方法,将动力模式中具有较高预测技巧的大尺度环流信息应用到降水等气象要素的统计预测模型当中,以改善后者预测效果。本文中所介绍的组合统计降尺度模型,可将动力气候模式预测的大尺度环流变量和前期观测的外强迫信号作为预测因子来预测中国夏季降水异常。交叉检验结果显示,组合统计降尺度预测模型的距平相关系数较原始模式结果有较大提高。在实时夏季降水预测中,2013~2018年平均的预测技巧相对较高,趋势异常综合检验(PS)评分平均为71.5分,特别是2015~2018年平均的PS评分预测技巧达到72.7分,总体上高于业务模式原始预测和业务发布预测的技巧。该组合统计降尺度模型预测性能稳定,为我国季节预测业务提供了一种有效参考。  相似文献   

7.
基于1982-2017年NCEP_CFSv2(NCEP Climate Forecast System version 2)模式预测资料对黑龙江省夏季降水进行降尺度预测。通过分析黑龙江省夏季降水与同期环流因子的关系、模式对关键区环流因子的预测,选取模式模拟与再分析资料相关较好、黑龙江降水实况与再分析资料关系较好的环流因子作为预测因子,结合最优子集回归法筛选因子,建立降尺度预测模型,最后采用交叉检验法进行预测效果检验和独立样本预测。结果表明:模式降尺度预测与实况的距平符号-致率为69%,6 a独立样本预测中有5 a预测正确,优于目前的业务预测效果。进-步研究发现,在模式能够准确预测环流因子的情况下,模式降尺度可以较好地预测黑龙江省夏季降水的趋势。此外,模式降尺度在拉尼娜年预测效果较好。  相似文献   

8.
通过对2013年1月—2015年6月(MODES)发布的最优月预测产品在贵州省月平均气温距平和降水距平百分率的预测检验评估,发现MODES对全省平均气温有较好的预报,分析时段内预测与实况的相关系数为0.24,距平同号率为65.5%,且对气温偏高预测的可参考性高于其对气温偏低的预测。相比于气温,MODES对降水预测能力较弱,参考性也相对较低,其中对贵州全省平均降水偏多趋势的预测技巧要优于对全省平均偏少趋势的预报技巧。逐站分析显示,MODES对贵州气温预测效果较好的地区在西部、北部和东部,对降水偏多的预测效果较好的地区位于除西北部和北部边缘地区外的其余大部地区。通过对MODES与预报员综合预报的结果评估发现,MODES月预测总体效果较预报员好,且稳定性高于预报员,可为预报员提供参考信息。  相似文献   

9.
Accurate prediction of the summer precipitation over the middle and lower reaches of the Yangtze River(MLYR) is of urgent demand for the local economic and societal development. This study assesses the seasonal forecast skill in predicting summer precipitation over the MLYR region based on the global Climate Forecast System of Nanjing University of Information Science and Technology(NUIST-CFS1.0, previously SINTEX-F). The results show that the model can provide moderate skill in predicting the i...  相似文献   

10.
The Big Brother Experiment methodology of Denis et al. (Clim Dyn 18:627-646, 2002) is applied to test the downscaling ability of a one-way nested regional climate model. This methodology consists of first obtaining a reference climate by performing a large domain, high resolution regional climate model simulation—the Big Brother. The small scales are then filtered out from the Big Brother’s output to produce a data set whose effective resolution is comparable to those of the data sets typically used to drive regional climate models. This filtered data set is then used to drive the same nested regional climate model, integrated over a smaller domain, but at the same high resolution as the Big Brother - the Little Brother. Any differences can only be attributed either to errors associated with the nesting strategy and downscaling technique, or to inherent unpredictability of the system, but not to model errors. This methodology was applied to the National Center for Environmental Prediction Regional Spectral Model over a tropical domain for a 1-month simulation period. The Little Brother reproduced most fields of the Big Brother quite well, with the important exception of the small-scale component of the precipitation field, which was poorly reproduced. Sensitivity experiments indicated that the poor agreement of the precipitation at these scales in a tropical domain was due primarily to the behavior of convective processes, and is specific to the Big Brother Experiment on the tropical domain. Much better agreement for the small-scale precipitation component was obtained in an extratropical winter case, suggesting that one factor explaining the tropical result is the importance of convective processes in controlling precipitation, versus the greater importance of large-scale dynamics in the winter extratropics. In the tropical case, results from two ensembles of five 3-month seasonal simulations forced by GCM output suggest a considerably greater predictability for the small-scale stationary component of tropical precipitation than did the Big Brother Experiment.  相似文献   

11.
对月平均大气环流预报试验、季度预测和中国汛期降水预测进行了总结。结果表明气候预测的对象必须是要素的时间平均场。利用数值模拟进行气候预测是今后的主要发展方向,而季度预测技巧的提高依赖于对物理参数化和物理机制的研究。最后,讨论了季平均气温和季总降水的可预报性问题,即时效性和准确率。  相似文献   

12.
Since the last International Union of Geodesy and Geophysics General Assembly(2003),predictability studies in China have made significant progress.For dynamic forecasts,two novel approaches of conditional nonlinear optimal perturbation and nonlinear local Lyapunov exponents were proposed to cope with the predictability problems of weather and climate,which are superior to the corresponding linear theory.A possible mechanism for the"spring predictability barrier"phenomenon for the El Ni(?)o-Southern Oscillation (ENSO)was provided based on a theoretical model.To improve the forecast skill of an intermediate coupled ENSO model,a new initialization scheme was developed,and its applicability was illustrated by hindcast experiments.Using the reconstruction phase space theory and the spatio-temporal series predictive method, Chinese scientists also proposed a new approach to improve dynamical extended range(monthly)prediction and successfully applied it to the monthly-scale predictability of short-term climate variations.In statistical forecasts,it was found that the effects of sea surface temperature on precipitation in China have obvious spatial and temporal distribution features,and that summer precipitation patterns over east China are closely related to the northern atmospheric circulation.For ensemble forecasts,a new initial perturbation method was used to forecast heavy rain in Guangdong and Fujian Provinces on 8 June 1998.Additionally, the ensemble forecast approach was also used for the prediction of a tropical typhoons.A new downscaling model consisting of dynamical and statistical methods was provided to improve the prediction of the monthly mean precipitation.This new downsealing model showed a relatively higher score than the issued operational forecast.  相似文献   

13.
A hybrid seasonal forecasting approach was generated by the National Centers for Environmental Prediction operational Climate Forecast System (CFS) and its nesting Climate extension of Weather Research and Forecasting (CWRF) model to improve forecasting skill over the United States. Skills for the three summers of 2011–2013 were evaluated regarding location, timing, magnitude, and frequency. Higher spatial pattern correlation coefficients showed that the hybrid approach substantially improved summer mean precipitation and 2-m temperature geographical distributions compared with the results of the CFS and CWRF models. The area mean temporal correlation coefficients demonstrated that the hybrid approach also consistently improved the timing prediction skills for both variables. In general, the smaller root mean square errors indicated that the hybrid approach reduced the magnitude of the biases for both precipitation and temperature. The greatest improvements were achieved when the individual models had similar skills. The comparison with a North American multi-model ensemble further proved the feasibility of improving real-time seasonal forecast skill by using the hybrid approach, especially for heavy rain forecasting. Based on the complementary advantages of CFS the global model and CWRF the nesting regional model, the hybrid approach showed a substantial enhancement over CFS real-time forecasts during the summer. Future works are needed for further improving the quality of the hybrid approach through CWRF’s optimized physics ensemble, which has been proven to be feasible and reliable.  相似文献   

14.
Prediction skill for southern African (16°–33°E, 22°–35°S) summer precipitation in the Scale Interaction Experiment-Frontier coupled model is assessed for the period of 1982–2008. Using three different observation datasets, deterministic forecasts are evaluated by anomaly correlation coefficients, whereas scores of relative operating characteristic and relative operating level are used to evaluate probabilistic forecasts. We have found that these scores for December–February precipitation forecasts initialized on October 1st are significant at 95 % confidence level. On a local scale, the level of prediction skill in the northwestern and central parts of southern Africa is higher than that in northeastern South Africa. El Niño/Southern Oscillation (ENSO) provides the major source of predictability, but the relationship with ENSO is too strong in the model. The Benguela Niño, the basin mode in the tropical Indian Ocean, the subtropical dipole modes in the South Atlantic and the southern Indian Oceans and ENSO Modoki may provide additional sources of predictability. Within the wet season from October to the following April, the precipitation anomalies in December-February are the most predictable. This study presents promising results for seasonal prediction of precipitation anomaly in the extratropics, where seasonal prediction has been considered a difficult task.  相似文献   

15.
An Expert Seasonal Prediction System for operational Seasonal Outlook (ESPreSSO) is developed based on the APEC Climate Center (APCC) Multi-Model Ensemble (MME) dynamical prediction and expert-guided statistical downscaling techniques. Dynamical models have improved to provide meaningful seasonal prediction, and their prediction skills are further improved by various ensemble and downscaling techniques. However, experienced scientists and forecasters make subjective correction for the operational seasonal outlook due to limited prediction skills and biases of dynamical models. Here, a hybrid seasonal prediction system that grafts experts’ knowledge and understanding onto dynamical MME prediction is developed to guide operational seasonal outlook in Korea. The basis dynamical prediction is based on the APCC MME, which are statistically mapped onto the station-based observations by experienced experts. Their subjective selection undergoes objective screening and quality control to generate final seasonal outlook products after physical ensemble averaging. The prediction system is constructed based on 23-year training period of 1983–2005, and its performance and stability are assessed for the independent 11-year prediction period of 2006–2016. The results show that the ESPreSSO has reliable and stable prediction skill suitable for operational use.  相似文献   

16.
This study addresses the predictability of rainfall variations over South America and the Amazon basin. A primary factor leading to model inaccuracy in precipitation forecasts is the coarse resolution data utilized by coupled models during the training phase. By using MERRA reanalysis and statistical downscaling along with the superensemble methodology, it is possible to obtain more precise forecast of rainfall anomalies over tropical South America during austral fall. Selective inclusion (and exclusion) of member models also allows for increased accuracy of superensemble forecasts. The use of coupled atmospheric–ocean numerical models to predict the rainfall anomalies has had mixed results. Improvement in individual member models is also possible on smaller spatial scales and in regions where substantial topographical changes were not handled well under original model initial conditions. The combination of downscaling and superensemble methodologies with other research methods presents the potential opportunity for increased accuracy not only in seasonal forecasts but on shorter temporal scales as well.  相似文献   

17.
我国短期气候预测技术进展   总被引:12,自引:6,他引:12       下载免费PDF全文
经过近60年的发展,我国短期气候预测技术和方法也有了长足进步。近年来,一些新的预报技术和机理认识不断应用于短期气候预测业务。ARGO海洋观测资料的使用大大提高了业务模式的预测技巧,新一代气候预测模式系统已经投入准业务化运行,研发了多种模式降尺度释用技术,多模式气候预测产品解释应用集成系统(MODES)和动力-统计结合的季节预测系统(FODAS)逐渐应用于业务中,大气季节内振荡(MJO)逐步在延伸期预报中得到应用。近年来,对全球海洋、北极海冰、欧亚积雪、南半球环流系统对东亚季风影响的新认识也不断引入到短期气候预测业务中。这些新技术和新认识的应用极大提高了我国短期气候预测的业务能力。  相似文献   

18.
A probabilistic precipitation forecasting model using generalized additive models (GAMs) and Bayesian model averaging (BMA) was proposed in this paper.GAMs were used to fit the spatial-temporal precipi...  相似文献   

19.
2014年夏季我国南方出现严重洪涝、北方大部干旱,国内绝大多数预测模型在三月起报的汛期预测中均未能抓住位于南方地区的异常雨带,导致预测准确率明显偏低。基于模式对东亚地区夏季海平面气压场的高预报技巧和青藏高原冬季积雪与南方地区夏季降水的高相关性,本文提出一个针对我国夏季降水异常的组合统计降尺度预测新方法(Hybrid Statistical Downscaling Prediction,简称HSDP),该方法综合利用了气候模式输出的高可预报性环流信息和前期观测的高原积雪异常信号,从而实现对我国南方夏季降水进行动力-统计相结合的改进预报。据此方法建立了一个基于国家气候中心气候预测模式的统计降尺度模型。对我国南方夏季降水进行跨季节预测的交叉检验结果显示,HSDP方法对于南方地区多年平均空间距平相关系数从模式原始预报的-0.006提高到0.24,且在大多数年份均有改进。基于HSDP方法于三月份制作的2014年夏季降水预测,能够很好地抓住南涝北旱的基本形势和我国南方的降水大值区,空间距平相关系数达到0.43。这表明,该方法对于我国夏季降水预测具有较好业务应用前景。  相似文献   

20.
We present an analysis of a high resolution multi-decadal simulation of recent climate (1971–2000) over the Korean Peninsula with a regional climate model (RegCM3) using a one-way double-nested system. Mean climate state as well as frequency and intensity of extreme climate events are investigated at various temporal and spatial scales, with focus on surface air temperature and precipitation. The mother intermediate resolution model domain encompasses the eastern regions of Asia at 60 km grid spacing while the high resolution nested domain covers the Korean Peninsula at 20 km grid spacing. The simulation spans the 30-year period of January 1971 through December 2000, and initial and lateral boundary conditions for the mother domain are provided from ECHO-G fields based on the IPCC SRES B2 scenario. The model shows a good performance in reproducing the climatological and regional characteristics of surface variables, although some persistent biases are present. Main results are as follows: (1) The RegCM3 successfully simulates the fine-scale structure of the temperature field due to topographic forcing but it shows a systematic cold bias mostly due to an underestimate of maximum temperature. (2) The frequency distribution of simulated daily mean temperature agrees well with the observed seasonal and spatial patterns. In the summer season, however, daily variability is underestimated. (3) The RegCM3 simulation adequately captures the seasonal evolution of precipitation associated to the East Asia monsoon. In particular, the simulated winter precipitation is remarkably good, clearly showing typical precipitation patterns that occur on the northwestern areas of Japan during the winter monsoon. Although summer precipitation is underestimated, area-averaged time series of precipitation over Korea show that the RegCM3 agrees better with observations than ECHO-G both in terms of seasonal evolution and precipitation amounts. (4) Heavy rainfall phenomena exceeding 300 mm/day are simulated only at the high resolution of the double nested domain. (5) The model shows a tendency to overestimate the number of precipitation days and to underestimate the precipitation intensities. (6) A CSEOF analysis reveals that the model captures the strength of the annual cycle and the surface warming trend throughout the simulated period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号