首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synoptic atmospheric eddies are affected by lower tropospheric air-temperature gradients and by turbulent heat fluxes from the surface. In this study we examine how ocean fronts affect these quantities and hence the storm tracks. We focus on two midlatitude regions where ocean fronts lie close to the storm tracks: the north-west Atlantic and the Southern Ocean. An atmospheric climate model of reasonably high resolution (~50 km) is applied in a climate-length (60 year) simulation in order to obtain stable statistics. Simulations with frontal structure in the sea surface temperature (SST) in one of the regions are compared against simulations with globally smoothed SST. We show that in both regions the ocean fronts have a strong influence on the transient eddy heat and moisture fluxes, not just in the boundary layer, but also in the free troposphere. Local differences in these quantities between the simulations reach 20–40 % of the maximum values in the simulation with smoothed SST. Averaged over the entire region of the storm track over the ocean the corresponding differences are 10–20 %. The effect on the transient eddy meridional wind variance is strong in the boundary layer but relatively weak above that. The potential mechanisms by which the ocean fronts influence the storm tracks are discussed, and our results are compared against previous studies with regional models, Aquaplanet models, and coarse resolution coupled models.  相似文献   

2.
Recent studies show that SouthEast Indian Ocean (SEIO) SSTs are a highly significant precursor of transitions of the whole monsoon-El Niño-Southern Oscillation (ENSO) system during recent decades. However, the reasons for this specific interannual variability have not yet been identified unequivocally from the observations. Among these, the possibility of SEIO SST-driven variability in the monsoon-ENSO system is investigated here by inserting positive/negative SEIO temperature anomalies in the February’s restart files of a state-of-the-art coupled General Circulation Model (GCM) for 49 years of a control simulation. For each year of the control simulation, the model was then integrated for a 1-year period in fully coupled mode. These experiments show that Indian Summer Monsoon (ISM) and tropical Indian Ocean Dipole Mode (IODM) events are significantly influenced by the SEIO temperature perturbations inserted in the mixed layer of the coupled GCM several months before. A warm SEIO perturbation, inserted in late boreal winter, slowly propagates northward during the following seasons, implies enhanced ISM rainfall and finally triggers a negative IODM pattern during boreal fall in agreement with observations. A reversed evolution is simulated for a cold SEIO perturbation. It is shown that the life cycle of the simulated SEIO signal is driven by the positive wind-evaporation-SST, coastal upwelling and wind-thermocline-SST feedbacks. Further diagnosis of the sensitivity experiments suggests that stronger ISM and IODM variabilities are generated by excluding the El Niño years of the control simulation or when the initial background state in the SEIO is warmer. This finding confirms that IODM events may be triggered by multiple factors, other than ENSO, including subtropical SEIO SST anomalies. However, the ENSO mode does not react significantly to the SEIO temperature perturbation in the perturbed runs even though the simulated Pacific pattern agrees with the observations during boreal fall. These discrepancies with the observations may be linked to model biases in the Pacific and to the too strong ENSO simulated by this coupled GCM. These modeling evidences confirm that subtropical Indian Ocean SST anomalies generated by Mascarene high pulses during austral summer are a significant precursor of both ISM and IODM events occuring several months later.  相似文献   

3.
This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean–atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean–atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.  相似文献   

4.
Monthly mean sea surface temperature (SST), free air temperature from satellite microwave sounding units (MSU) and oceanic surface energy fluxes are subjected to empirical orthogonal function (EOF) analysis for a common decade to investigate the physical relationships involved. The first seasonal modes of surface solar energy flux and SST show similar inter-hemispheric patterns with an annual cycle. Solar flux appears to control this pattern of SST. The first seasonal mode of MSU is similar with, additionally, land-sea differences; MSU is apparently partly controlled by absorption of solar near-infrared radiation and partly by sensible heat from the land surface. The second and third seasonal eigenvector of SST and solar flux exhibit semi-annual oscillations associated with a pattern of cloudiness in the subtropics accompanying the translation of the Hadley cell rising motion between the hemispheres. The second seasonal mode of MSU is dominated by an El Niño signal. The first nonseasonal EOFs of SST and solar flux exhibit El Niño characteristics with the solar pattern being governed by west-to-east translation of a Walker cell type pattern. The first non-seasonal EOF of MSU shows a tropical strip pattern for the El Niño mode, which is well correlated with the latent heat fluxes in the tropical east Pacific but not in the tropical west Pacific. Two possible explanations are: an increase in subsidence throughout the tropical strip driven by extra evaporation in the tropical east Pacific and consequent additional latent heat liberation; a decrease of meridional heat flux out of the tropics.  相似文献   

5.
气象卫星遥感地表温度推算近地表气温方法研究   总被引:6,自引:0,他引:6  
韩秀珍  李三妹  窦芳丽 《气象学报》2012,70(5):1107-1118
气温是各种植物生理、水文、气象、环境等模式或模型中的一个非常重要的近地表气象参数.多年来气温数据以离散的常规气象站点观测为主,连续分布的格点气温数据则以站点资料插值而得到,分辨率低,无法反映地形等下垫面因素对局地气温的影响,在农业气候区划等研究中具有一定的局限性.随着卫星遥感地表温度算法的日趋成熟,为探讨卫星遥感地表温度数据在气温观测中的可能性和可行性,利用全中国2340个站点1998 2007年的逐旬平均最高气温数据,以及相应时段的NOAA/AVHRR旬最高地表温度数据,以线性回归及拟合模型为主,通过考虑植被指数、土地覆盖类型、季节、风速、气压、降水等各类影响因子,建立了旬最高地表温度与旬平均最高气温间的推算模型,并利用未参与建模的2002-2003年的常规气象站点气温数据,同时与推算气温和插值气温结果进行对比分析.结果表明,利用卫星遥感地表温度数据推算的旬值气温数据可取得较高的精度,尤其在地形复杂地区以及站点稀疏地区精度明显高于插值气温结果.  相似文献   

6.
7.
Dai  Panxi  Gao  Yongqi  Counillon  Fran&#;ois  Wang  Yiguo  Kimmritz  Madlen  Langehaug  Helene R. 《Climate Dynamics》2020,54(9):3863-3878
Climate Dynamics - The version of the Norwegian Climate Prediction Model (NorCPM) that only assimilates sea surface temperature (SST) with the Ensemble Kalman Filter has been used to investigate...  相似文献   

8.
9.
A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddy fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effects on the transport of mean moisture by the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides a potential for reducing this sensitivity by representing the unresolved eddies by their marginally resolved counterparts.  相似文献   

10.
Because the atmosphere and ocean are interacting systems, it is inappropriate to specify sea surface temperature when dealing with the atmosphere, or atmospheric anemometer level temperature and moisture when dealing with the ocean. All of these quantities should be determined interactively in terms of the external forcing: the solar constant.In the tropics, it is shown that the (cumulus) convective processes may be described by a one-dimensional cloud model. The near-surface ocean may similarly be described by a one-dimensional mixed-layer model. The coupling is achieved through a sea surface flux budget combined with the flux parameterizations implied by Monin-Obukhov similarity theory.The coupled one-dimensional atmosphere-ocean model is applied to the equilibrium situation in which all temperatures reach a steady state. Since the ocean, lacking an internal heating or cooling mechanism, can only be heated or cooled through sensibleheat fluxes through the sea surface, in equilibrium these fluxes must vanish. The atmosphere, however, maintains a stable lapse rate by balancing cumulonimbus heating against net radiative cooling. All water precipitated from cumulonimbus clouds must have evaporated from sea surface. It is shown that this equilibrium system is closed and determinable solely in terms of the solar constant.For various values of the solar constant, the sea surface temperature, the flux of latent and sensible heat from the surface, the height of the tropopause, mixed layer, and trade inversion layer, and generally, the entire vertical structure of the tropical atmosphere and near-surface ocean can be determined. The equilibrium sea surface temperature is shown to be relatively insensitive to changes in the solar constant, additional solar flux being compensated mainly by additional evaporation. Finally, the usefulness and limitations of the model are pointed out.  相似文献   

11.
An equatorial β-plane model which includes realistic non-uniform land-sea contrast and the underlying surface temperature distribution is used to simulate the 30-60 day oscillation (LFO) processes in tropical atmosphere, with emphasis on its longitude-dependent evolution and convective seesaw between Indian and the western Pacific oceans.The model simulated the twice-amplification of the disturbances over Indian and the western Pacific oceans while they are travelling eastward. It reproduced the dipole structure caused by the out-of-phase oscillation of the active centres in these two areas and the periodical transition between the phases of LFO. It is suggested that the convective seesaw is the result of interaction of the internal dynamics of tropical atmosphere with the zonally non-uniform thermal forcing from underlying surface. The convective activities are suppressed over Indonesia mari-time continents whilst they are favoured over the Indian Ocean and western Pacific warm waters, so there formed two active oscillation centres. The feedback of convection with large-scale flow slows down the propagation of disturb-ances when they are intensifying over these two areas, therefore they manifest a kind of quasi-stationary component to favor the ‘dipole’ structure. Whereas the disturbances weaken and speed up over the eastern Pacific cold water re-gion due to the interaction of sensible heating and evaporation with perturbational wind. Therefore the two major centers just show out-of-phase oscillation during onecycle around the latitudinal beltBy introducing the SST anomalies in El Ni?o and La Ni?a years into the surface temperature, we also show that they have significant influence on LFO processes. In an anomalously warm year, the LFO disturbances dissipate more slowly over the central-eastern Pacific region and can travel farther eastward; whilst in an anomalously cold year, the opposite is true.  相似文献   

12.
Summary Three one-year experimental simulations with the National Center for Atmospheric Research Community Climate Model (NCAR CCM) were performed with three sea ice albedo parameterizations and compared with control run results to examine their impact on polar surface temperature, planetary albedo and clouds. The first integration utilized sea ice albedos of the Arctic Basin for the spring and summer of 1977 derived from defence Meteorological Satellite Imagery (DMSP). The second simulation employed prescribed lead and melt pond fractions and an albedo weighting scheme. The third simulation involved the coupling of an interactive sea ice/snow albedo parameterization made a function of surface state.Results show that prescribed, and assumed true satellite sea ice albedos produced higher planetary albedos than those calculated with the standard CCM sea ice albedo scheme in the control run. As a result, lower temperatures (up to 0.5 K) and increased cloudiness are generated for the Arctic region. The standard CCM sea ice albedo scheme is used as an adjustment to maintain normal temperatures for the polar oceans. The radiative impact of leads and melt ponds warmed sea ice regions only for short time periods. The third scheme generated markedly lower planetary albedos (reductions of 0.07 to 0.17) and higher surface temperatures (up to 2.0 K) than control values.The CCM simulates a gradual decrease in spring and summer Arctic cloud cover whereas observations show a sharp spring increase. Examination of the CCM code, particularly the cloud parameterization, is required to address this problem.With 12 Figures  相似文献   

13.
Spectral nudging sensitivity experiments in a regional climate model   总被引:4,自引:0,他引:4  
In this study, the scale selective bias correction (SSBC) method described by Kanamitsu et al. (2010) is further examined by considering the full wind nudging and the vertically weighted damping coefficient. The 2001 June?CJuly?CAugust RSM simulation over a relatively large domain covering much of the Asian continent, the northern part of Australia, and the Indian and western Pacific oceans was the main focus. The full wind nudging shows wind fields closer to the driving global analysis. However, it leads to significantly distorted fields (e.g., temperature and geopotential height) aloft, accompanying excessive precipitation over the western Pacific. The gradual reduction of vorticity nudging from the model top to the ground surface improves rainfall patterns without a discernible distortion of large-scale fields. Further evaluation of a 10-year-summer simulation over East Asia confirmed that this revised SSBC method improves the monsoonal rainfall against the method of Kanamitsu et al. It is therefore concluded that vorticity nudging alleviates largescale errors by maintaining the near geostrophic balance between mass and winds. The reduction of this nudging factor in the lower troposphere allows the ageostrophic component of wind to develop as in nature, which leads to the improvement of precipitation.  相似文献   

14.
利用2018年1—10月华南3 km区域高分辨率模式08时、20时起报的气温预报和实况资料,采用线性内插法进行站点预报值处理,并从平均均方根误差及预报准确率的角度,检验分析了贵州省72 h预报内逐24 h最高(低)气温预报质量。结果表明,72 h内随着预报时效的增加,预报准确率差异较小;日最低气温预报准确率相对最高气温平均高出20%左右;08时起报的最高(低)气温预报优于20时的。同时发现,最高(低)气温的预报能力在月份上存在明显差异,6—8月预报性能总体优于其它月份;在24~48 h预报中,东北—西南向一带较贵州其它区域展现出更高的预报能力。在9个主要城市站上,最高(低)气温均表现出较高的预报技巧,其中,20时起报的兴义站24 h最低气温准确率100%。通过对2018年7月18日气温预报质量检验,最高(低)气温及35.0℃以上高温事件预报准确率均在80%左右,较好反映了天气实况。因此,华南3 km高分辨率区域模式对贵州气温预报具有较好的参考价值。  相似文献   

15.
The response of the polar atmosphere to the reduction of sea ice area in the Arctic and the rise of sea surface temperature is considered using the atmospheric general circulation model with prescribed boundary conditions on the ocean surface. Boundary conditions include the observed sea ice concentration and the sea surface temperature in recent three decades. The study demonstrates that the reduction of sea ice extent is the major factor contributing to the amplification of the warming in the Arctic. However, the spatiotemporal distribution of the warming is not uniform. It is mostly pronounced in autumn and winter and extends up to the height of about 1 km in the areas of large reduction of sea ice concentration or of its complete disappearance. It is demonstrated that the rise of the sea surface temperature also provides some contribution to the warming in the Arctic. Due to the global warming in recent decades statistically significant changes occurred in the distribution of the sea-level pres sure and geopotential heights in the polar region and at mid-latitudes in autumn, winter, and spring. However, these changes are mainly associated with the increase in the sea surface temperature but not with the reduction of sea ice extent. The study has not revealed any significant ret ationships between ice cover anomalies in the Arctic and the evolution of pressure patterns of the synoptic scale that could contribute to the development of cold weather episodes over Eurasia in winter.  相似文献   

16.
海温异常对台风形成的影响   总被引:13,自引:0,他引:13  
吴国雄 《大气科学》1992,16(3):322-332
本文利用地球流体力学实验室(GFDL)的低分辨气候模式进行数值试验,以研究海温异常对台风形成的影响.试验采用恒定8月气候条件和海表温度(SST).海温异常(SSTA)被置于北太平洋不同区域.结果表明,台风生成频率在暖SSTA区明显增加.这是由于暖SSTA区低层辐合的增强一方面使低空气旋式环流和高空反气旋式环流加大,另一方面导致低层水汽向该区辐合,使潜热释放加强,对流加剧所致.此一机制被用于解释台风频率和ENSO事件的相关.在冷ENSO年份,西北和西南太平洋台风增多不仅是由于赤道东太平洋SST异常冷,还与西太平洋SST异常暖有关.  相似文献   

17.
V. Pope  R. Stratton 《Climate Dynamics》2002,19(3-4):211-236
  相似文献   

18.
The ability of a regional climate model (RCM) to successfully reproduce the fine-scale features of a regional climate during summer is evaluated using an approach nick-named the “Big-Brother Experiment” (BBE). The BBE establishes a reference virtual-reality climate with a RCM applied on a large and high-resolution domain: this simulation is called the Big-Brother (BB) simulation. This reference simulation is then downgraded by filtering small-scale features that are unresolved in today’s global objective analyses. The resulting fields are then used as nesting data to drive the same RCM, which is integrated, at the same high resolution as the BB, only over a sub-area of the larger BB domain, hence, producing the Little-Brother simulation (LB). With the BBE approach, differences between the two simulated climates (BB and LB) can be unambiguously attributed to errors associated with the dynamical downscaling technique, and not to model errors or observational limitations. The current study focuses on the summer over the West Coast of North America. Results of the stationary and transient parts of the fields, decomposed by horizontal scales, are presented for the month of July, for 5 consecutive years (1990–1994). Three degrees of spatial filtering (roughly equivalent to the global spectral resolution of T30, T60 and T360) as well as two update intervals (3 and 6 h) of the lateral boundary conditions (LBC) have been employed. This study establishes that the maximum acceptable resolution of driving data for summer is T30, with improved results employing the T60 resolution of LBC. There is little improvement by reducing the time interval from 6 h to 3 h. These results are generally in agreement with previous studies carried out for winter. The good correlation between LB and BB simulations is more difficult to achieve during the summer season, mostly due to weaker control exerted by LBC. Poor correlations are more pronounced for the transient parts than they are for the stationary parts of the fields. This is especially true for the precipitation field, where differences can be attributed to higher temporal variability during the summer due to the presence of convection.  相似文献   

19.
20.
 A simplified global circulation model is used to analyse a greenhouse warming experiment simulated by a comprehensive general circulation model. The given GCM scenario and control climates are assimilated by the simplified model using a dynamical relaxation technique. Two sets of sensitivity experiments investigate the influence of upper and lower tropospheric changes in baroclinicity on the Northern Hemisphere winter storm tracks. The results show that the three-dimensional structure of both the background flow and the changes in baroclinicity are important for the behaviour of mid-latitude eddy activity in relation to modifications of the baroclinicity. In general, the mid-latitude eddy activity is more sensitive to lower than to upper level changes in baroclinicity. The results further suggest that the simulated storm track changes in the GCM scenario are dominated by local modes of baroclinic instability. Received: 17 December 1996 / Accepted: 14 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号