首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
利用常规观测资料和6 h一次的NCEP 1°×1°再分析场资料对新疆2015年2月12—14日北疆暴雪过程和2015年5月17—21日南疆暴雨过程的环流形势和主要影响系统进行分析,并基于HYSPLIT模式模拟的后向轨迹分析强降水的水汽来源和输送特征。结果表明:1)2次强降水过程均发生在高空低槽东移,低层有低涡,地面有锋面气旋,高空有辐散的天气背景下。2)冬季暴雪过程中,北疆水汽主要源自西亚和中亚地区。其中源自西亚地区的干气块下沉到近地面时从下垫面获得水汽,对强降雪的贡献最大;其次是起源于中亚西南部地区近地层的湿气块对强降雪的贡献。3)春季暴雨过程中,南疆的水汽主要来自中亚的哈萨克斯坦。其中来自哈萨克斯坦南部上空的干空气下沉到近地层时从下垫面获得水汽,对强降雨的贡献最大;其次是源自哈萨克斯坦东部和东南部对流层低层的湿气块对强降雨的贡献大。4)2次强降水过程中水汽主要来自陆地而不是海洋,气块在近地层移动或下沉到近地层时,下垫面水汽蒸发使气块变湿,是强降水的水汽主要贡献者;表明春季和冬季的水汽输送通道与夏季来自阿拉伯海等低纬的水汽通道不同。  相似文献   

4.
5.
By using the ECMWF reanalysis daily data and daily precipitation data of 80 stations in Northeast China from 1961 to 2002, the impacts of moisture transport of East Asian summer monsoon on the summer precipitation anomaly in Northeast China, and the relationship between the variation of moisture budget and the establishment of East Asian summer monsoon in this region are studied. The results demonstrate that the moisture of summer precipitation in Northeast China mainly originates from subtropical, South China Sea, and South Asia monsoon areas. East China and its near coastal area are the convergent region of the monsoonal moisture currents and the transfer station for the currents continually moving northward. The monsoonal moisture transport, as an important link or bridge, connects the interaction between middle and low latitude systems. In summer half year, there is a moisture sink in Northeast China where the moisture influx is greater than outflux. The advance transport and accumulation of moisture are of special importance to pentad time scale summer precipitation. The onset, retreat, and intensity change of the monsoonal rainy season over Northeast China are mainly signified by the moisture input condition along the southern border of this area. The establishment of East Asian summer monsoon in this area ranges from about 10 July to 20 August and the onset in the west is earlier than that in the east. The latitude that the monsoon can reach is gradually northward from west to east, reaching 50°N within longitude 120°-135°E. In summer, the difference of air mass transport between summers with high and low rainfall mainly lies in whether more air masses originating from lower latitudes move northward through East China and its coastal areas, consequently transporting large amounts of hot and humid air into Northeast China.  相似文献   

6.
7.
8.
9.
The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.  相似文献   

10.
葛家荣  任雪娟 《气象科学》2019,39(6):711-720
使用常规资料及HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory Model)模式,分析了早夏和晚夏期间南亚高压次季节尺度异常偏东事件和异常偏西事件发生时,我国长江流域降水及水汽输送异常特征。结果表明:早夏期间当南亚高压异常东伸时,西太平洋副热带高压可西伸至我国东南沿岸,此时,降水正异常场主要位于我国东部地区,表现为江淮区域降水异常偏多;而晚夏期间当南亚高压异常东伸时,西太平洋副热带高压的西脊点更偏东,降水正异常区位置比早夏偏西,表现为四川盆地的降水异常偏多。早夏期间,与南亚高压异常偏西事件相比,南亚高压异常偏东事件有利于更多的水汽从南方的水汽源地输送到我国江淮区域,加上此时江淮流域存在异常上升运动,动力和水汽条件共同使得江淮流域降水偏多。晚夏四川盆地地区有类似的结论。  相似文献   

11.
12.
陈德花  潘宁  张玲  张伟  荀爱萍 《暴雨灾害》2018,45(2):149-157

利用常规气象观测资料、NCEP再分析资料与WRF数值模拟资料,以2014年8月11日闽东沿海一次大暴雨天气过程为例,分析了该过程中海风锋、低压环流的形成、移动及其在暴雨区上空的结构演变与热力、动力特征。结果表明:(1)该过程午后强降水的主要影响系统是海风锋,夜间强降水的主要影响系统是低压环流。(2)数值模式较好地模拟出海风锋的生消以及低压环流的形成和移动。海风能深入到内陆70~90 km,并与山谷风形成海风锋。在海风锋的前端是东南风和东北或西北风交汇的辐合带,对应其南侧海风气旋性曲率最大处,降水越强。(3)海风锋在向内陆推进的过程中呈现出湿度增大、湿层增厚、气温下降的特征;海风最强时刻对应低空辐合最强、地面降水最强;海陆气压差日变化与海陆温差呈反位相分布。(4)闽东沿海午后强降水主要由海风锋造成;夜间,再次增强的偏南气流与随冷空气南下的偏北气流汇合,激发气旋性涡度增大,使得低压环流强烈发展,导致闽东沿海夜间大暴雨。

  相似文献   

13.
14.
利用1979—2019年ERA5再分析资料和站点降水资料,研究了5月中国土壤湿度异常对7月华南和青藏高原东部偶极子型降水年际变化的影响及其可能的物理过程。结果表明,当5月青藏高原土壤湿度偏湿,华中地区土壤湿度偏干时,对应7月华南(高原东部)降水偏多(偏少),两地降水呈偶极子型分布。通过进一步的诊断分析发现,青藏高原(华中地区)土壤湿度正(负)异常可从5月持续至7月,使得7月中国北方地区地表湍流热通量正异常,进而使得对流层中低层大气增暖,中国北方与贝加尔湖之间经向温度梯度和大气斜压性增强,天气尺度的瞬变波活动增强。通过瞬变的涡度强迫有利于中国北方及蒙古地区准正压异常高压和Rossby波波源的形成,相关的Rossby波向东南方向传播至我国南方,使得华南地区出现准正压结构的异常低压,有利于西北太平洋副热带高压东移,南亚高压西移。对应中国北方及蒙古-华南地区对流层中低层为反气旋-气旋式环流异常,进而导致华南地区(高原东部)降水增多(减少)。此外,中国北方-蒙古地区的异常高压与局地偏干的土壤湿度之间的正反馈过程,有利于上述物理过程的维持和增强,进而有利于7月偶极子降水的异常,反之亦然。  相似文献   

15.
利用NCEP/NCAR再分析环流资料、CMAP降水量和NOAA海温资料研究了热带印度洋夏季水汽输送的时空变化特征,并考察其对南亚季风区夏季降水的影响.热带印度洋夏季异常水汽输送第一模态表现为异常水汽从南海向西到达孟加拉湾后分成两支,其中一支继续往西到达印度次大陆和阿拉伯海,对应印度半岛南端和中南半岛的西风水汽输送减弱,导致这些区域降水减少;第二模态表现为异常水汽从赤道东印度洋沿赤道西印度洋、阿拉伯海、印度半岛、中南半岛的反气旋输送,印度和孟加拉湾南部为反气旋异常水汽输送,水汽辐散、降水减少,而印度东北部为气旋性水汽输送,水汽辐合、降水增多.就水汽输送与局地海温的关系而言,水汽输送第一模态与热带印度洋海温整体增暖关系密切,而第二模态与同期印度洋偶极子关系密切.  相似文献   

16.
东亚和南亚季风协同作用对西南地区夏季降水的影响   总被引:1,自引:0,他引:1  
为探究东亚夏季风(EASM,East?Asian?summer?monsoon)和南亚夏季风(SASM,South?Asian?summer?monsoon)相互作用及其强弱变化对西南地区夏季降水的影响,利用1979—2019年西南地区161站逐日降水观测资料和ERA-5提供的1979—2019年全球再分析资料,通过对...  相似文献   

17.
Aerosols affect precipitation by modifying cloud properties such as cloud droplet number concentration (CDNC). Aerosol effects on CDNC depend on aerosol properties such as number concentration, size spectrum, and chemical composition. This study focuses on the effects of aerosol chemical composition on CDNC and, thereby, precipitation in a mesoscale cloud ensemble (MCE) driven by deep convective clouds. The MCE was observed during the 1997 department of energy's Atmospheric Radiation Measurement (ARM) summer experiment. Double-moment microphysics with explicit nucleation parameterization, able to take into account those three properties of aerosols, is used to investigate the effects of aerosol chemical composition on CDNC and precipitation. The effects of aerosol chemical compositions are investigated for both soluble and insoluble substances in aerosol particles. The effects of soluble substances are examined by varying mass fractions of two representative soluble components of aerosols in the continental air mass: sulfate and organics. The increase in organics with decreasing sulfate lowers critical supersaturation (Sc) and leads to higher CDNC. Higher CDNC results in smaller autoconversion of cloud liquid to rain. This provides more abundant cloud liquid as a source of evaporative cooling, leading to more intense downdrafts, low-level convergence, and updrafts. The resultant stronger updrafts produce more condensation and thus precipitation, as compared to the case of 100% sulfate aerosols. The conventional assumption of sulfate aerosol as a surrogate for the whole aerosol mass can be inapplicable for the case with the strong sources of organics. The less precipitation is simulated when an insoluble substance replaces organics as compared to when it replaces sulfate. When the effects of organics on the surface tension of droplet and solution term in the Köhler curve are deactivated by the insoluble substance, Sc is raised more than when the effects of sulfate on the solution term are deactivated by the insoluble substance. This leads to lower CDNC and, thus, larger autoconversion of cloud liquid to rain, providing less abundant cloud liquid as a source of evaporative cooling. The resultant less evaporative cooling produces less intense downdrafts, weaker low-level convergence, updrafts, condensation and, thereby, less precipitation in the case where organics is replaced by the insoluble substance than in the case where sulfate is replaced by the insoluble substance. The variation of precipitation caused by the change in the mass fraction between the soluble and insoluble substances is larger than that caused by the change in the mass fraction between the soluble substances.  相似文献   

18.
Presented are the computations of condensation and precipitation of atmospheric moisture at night depending on the diurnal variations of air temperature and air humidity. Used are the meteorological data for northern Dagestan. Determined is the contribution of the dew to the moistening of the soil. The examples of the exponential and lognormal distribution of droplets revealed that the use of the velocity of medium-size droplet underestimates the value of the moisture mass precipitated on the soil. A concept of the mean mass precipitation velocity is introduced, and the formulae are provided for determining the average mass of deposited condensate depending on humidity, the temperature drop, and size distribution of droplets. Posed is a new problem of diurnal condensate precipitation in the soil in summer and of technology of its increase.  相似文献   

19.
The performance of the Canadian Land Surface Scheme (CLASS) when coupled to the CCCma third generation general circulation model is evaluated in an AMIP II simulation. Our primary aim is to understand how CLASS processes moisture and to compare model estimates of moisture budget components with observations. The modelled mean annual precipitation and runoff, and their latitudinal structures, compare well with observations although some discrepancies remain in the simulation of regional values of these quantities. The amplitude and phase of the first harmonic of the precipitation annual cycle also compares well with observations although less well over regions of sparse precipitation and/or high topography. In the model, the canopy plays a major role in processing moisture at the land surface indicating the importance of vegetation in climate. The canopy intercepts a large fraction of the precipitation and provides the medium for returning much moisture back to the atmosphere as evapotranspiration. Though important locally, the snow moisture reservoir plays a relatively minor role in the global moisture budget. It acts primarily as a storage and delay mechanism with winter precipitation released to the ground reservoir on melting. The ground moisture reservoir also plays a major role and processes a similar amount of moisture as the canopy, although in a different manner. The globally averaged model runoff compares well with observation-based estimates, although the model partitioning into surface runoff and drainage does not agree particularly well with the single available observation-based estimate. How moisture is processed at the land surface serves as a basis for model intercomparison and for understanding the modelled moisture budget and its variation and changes with climate change. Only the most basic quantities (precipitation, runoff, and partitioning of runoff into surface runoff and drainage) may be compared with observation-based estimates, however, and the establishment of more complete moisture budget remains an important need.  相似文献   

20.
应用MM5中尺度模式,选用4种不同云微物理方案(Dudhia简单冰相方案、Reisner混合相方案、Reisner2霰方案和Schultz微物理方案),对2002年7月12-13日祁连山区降水过程进行了数值模拟试验。模拟结果的对比分析表明,不同云微物理方案在祁连山区降水的模拟中对降水落区的模拟均偏南;除Reisner2霰方案外,其他3种方案对降水中心落点的模拟影响不大,降水中心强度对云微物理方案不敏感;显式降水和参数化降水对云微物理方案有不同程度的依赖性;云微物理过程通过影响动力条件发生发展的时间和强度,来影响强降水发生的时间和强度。通过各云微物理参数的分析发现,各物理过程中微物理参数参与降水的过程不同:对Dudhia简单冰相方案来说,雨水和云水是形成降水的主要过程;Reisner混合相方案中降水的形成主要是由于雨水、云水、雪和霰的碰并过程,冰晶的碰并相对较弱;在Reisner2霰方案中,雨水、云水、冰晶、雪和霰均参与碰并碰冻过程;Schultz微物理方案中冰晶、雪和霰的碰并过程更为重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号