首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With an increasing political focus on limiting global warming to less than 2 °C above pre-industrial levels it is vital to understand the consequences of these targets on key parts of the climate system. Here, we focus on changes in sea level and sea ice, comparing twenty-first century projections with increased greenhouse gas concentrations (using the mid-range IPCC A1B emissions scenario) with those under a mitigation scenario with large reductions in emissions (the E1 scenario). At the end of the twenty-first century, the global mean steric sea level rise is reduced by about a third in the mitigation scenario compared with the A1B scenario. Changes in surface air temperature are found to be poorly correlated with steric sea level changes. While the projected decreases in sea ice extent during the first half of the twenty-first century are independent of the season or scenario, especially in the Arctic, the seasonal cycle of sea ice extent is amplified. By the end of the century the Arctic becomes sea ice free in September in the A1B scenario in most models. In the mitigation scenario the ice does not disappear in the majority of models, but is reduced by 42 % of the present September extent. Results for Antarctic sea ice changes reveal large initial biases in the models and a significant correlation between projected changes and the initial extent. This latter result highlights the necessity for further refinements in Antarctic sea ice modelling for more reliable projections of future sea ice.  相似文献   

2.
Using the set of simulations performed with atmosphere-ocean general circulation models (AOGCMs) for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), the projected regional distribution of sea ice for the twenty-first century has been investigated. Averaged over all those model simulations, the current climate is reasonably well reproduced. However, this averaging procedure hides the errors from individual models. Over the twentieth century, the multimodel average simulates a larger sea-ice concentration decrease around the Antarctic Peninsula compared to other regions, which is in qualitative agreement with observations. This is likely related to the positive trend in the Southern Annular Mode (SAM) index over the twentieth century, in both observations and in the multimodel average. Despite the simulated positive future trend in SAM, such a regional feature around the Antarctic Peninsula is absent in the projected sea-ice change for the end of the twenty-first century. The maximum decrease is indeed located over the central Weddell Sea and the Amundsen–Bellingshausen Seas. In most models, changes in the oceanic currents could play a role in the regional distribution of the sea ice, especially in the Ross Sea, where stronger southward currents could be responsible for a smaller sea-ice decrease during the twenty-first century. Finally, changes in the mixed layer depth can be found in some models, inducing locally strong changes in the sea-ice concentration.
W. LefebvreEmail:
  相似文献   

3.
The influence of changes in winds over the Amundsen Sea has been shown to be a potentially key mechanism in explaining rapid loss of ice from major glaciers in West Antarctica, which is having a significant impact on global sea level. Here, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model data are used to assess twenty-first century projections in westerly winds over the Amundsen Sea (U AS ). The importance of model uncertainty and internal climate variability in RCP4.5 and RCP8.5 scenario projections are quantified and potential sources of model uncertainty are considered. For the decade 2090–2099 the CMIP5 models show an ensemble mean twenty-first century response in annual mean U AS of 0.3 and 0.7 m s?1 following the RCP4.5 and RCP8.5 scenarios respectively. However, as a consequence of large internal climate variability over the Amundsen Sea, it takes until around 2030 (2065) for the RCP8.5 response to exceed one (two) standard deviation(s) of decadal internal variability. In all scenarios and seasons the model uncertainty is large. However the present-day climatological zonal wind bias over the whole South Pacific, which is important for tropical teleconnections, is strongly related to inter-model differences in projected change in U AS (more skilful models show larger U AS increases). This relationship is significant in winter (r = ?0.56) and spring (r = ?0.65), when the influence of the tropics on the Amundsen Sea region is known to be important. Horizontal grid spacing and present day sea ice extent are not significant sources of inter-model spread.  相似文献   

4.
The aim of this work is to assess potential future Antarctic surface mass balance changes, the underlying mechanisms, and the impact of these changes on global sea level. To this end, this paper presents simulations of the Antarctic climate for the end of the twentieth and twenty-first centuries. The simulations were carried out with a stretched-grid atmospheric general circulation model, allowing for high horizontal resolution (60 km) over Antarctica. It is found that the simulated present-day surface mass balance is skilful on continental scales. Errors on regional scales are moderate when observed sea surface conditions are used; more significant regional biases appear when sea surface conditions from a coupled model run are prescribed. The simulated Antarctic surface mass balance increases by 32 mm water equivalent per year in the next century, corresponding to a sea level decrease of 1.2 mm year−1 by the end of the twenty-first century. This surface mass balance increase is largely due to precipitation changes, while changes in snow melt and turbulent latent surface fluxes are weak. The temperature increase leads to an increased moisture transport towards the interior of the continent because of the higher moisture holding capacity of warmer air, but changes in atmospheric dynamics, in particular off the Antarctic coast, regionally modulate this signal.  相似文献   

5.
Summary The relationship between clouds and the surface radiative fluxes over the Arctic Ocean are explored by conducting a series of modelling experiments using a one-dimensional thermodynamic sea ice model. The sensitivity of radiative flux to perturbations in cloud fraction and cloud optical depth are determined. These experiments illustrate the substantial effect that clouds have on the state of the sea ice and on the surface radiative fluxes. The effect of clouds on the net flux of radiation at the surface is very complex over the Arctic Ocean particularly due to the presence of the underlying sea ice. Owing to changes in surface albedo and temperature associated with changing cloud properties, there is a strong non-linearity between cloud properties and surface radiative fluxes. The model results are evaluated in three different contexts: 1) the sensitivity of the arctic surface radiation balance to uncertainties in cloud properties; 2) the impact of interannual variability in cloud characteristics on surface radiation fluxes and sea ice surface characteristics; and 3) the impact of climate change and the resulting changes in cloud properties on the surface radiation fluxes and sea ice characteristics.With 11 Figures  相似文献   

6.
The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century glacier contribution to sea-level rise. Glacier volume changes are calculated with a surface mass balance model combined with volume-area scaling, applied to 89 glaciers in different climatic regions. The mass balance model is based on a simplified energy balance approach, with separated contributions by net solar radiation and the combined other fluxes. Future mass balance is calculated from anomalies in air temperature, precipitation and atmospheric transmissivity, taken from eight global climate models forced with the A1B emission scenario. Regional and global sea-level contributions are obtained by scaling the volume changes at the modelled glaciers to all glaciers larger than 0.1 km2 outside the Greenland and Antarctic ice sheets. This results in a global value of 0.102 ± 0.028 m (multi-model mean and standard deviation) relative sea-level equivalent for the period 2012–2099, corresponding to 18 ± 5 % of the estimated total volume of glaciers. Glaciers in the Antarctic, Alaska, Central Asia and Greenland together account for 65 ± 4 % of the total multi-model mean projected sea-level rise. The projected sea-level contribution is 35 ± 17 % larger when only anomalies in air temperature are taken into account, demonstrating an important compensating effect by increased precipitation and possibly reduced atmospheric transmissivity. The variability in projected precipitation and atmospheric transmissivity changes is especially large in the Arctic regions, making the sea-level contribution for these regions particularly sensitive to the climate model used. Including additional uncertainties in the modelling procedure and the input data, the total uncertainty estimate for the future projections becomes ±0.063 m.  相似文献   

7.
A regional ocean circulation model was used to project Baltic Sea climate at the end of the twenty-first century. A set of four scenario simulations was performed utilizing two global models and two forcing scenarios. To reduce model biases and to spin up future salinity the so-called Δ-change approach was applied. Using a regional coupled atmosphere–ocean model 30-year climatological monthly mean changes of atmospheric surface data and river discharge into the Baltic Sea were calculated from previously conducted time slice experiments. These changes were added to reconstructed atmospheric surface fields and runoff for the period 1903–1998. The total freshwater supply (runoff and net precipitation) is projected to increase between 0 and 21%. Due to increased westerlies in winter the annual mean wind speed will be between 2 and 13% larger compared to present climate. Both changes will cause a reduction of the average salinity of the Baltic Sea between 8 and 50%. Although salinity in the entire Baltic might be significantly lower at the end of the twenty-first century, deep water ventilation will very likely only slightly change. The largest change is projected for the secondary maximum of sea water age within the halocline. Further, the average temperature will increase between 1.9 and 3.2°C. The temperature response to atmospheric changes lags several months. Future annual maximum sea ice extent will decrease between 46 and 77% in accordance to earlier studies. However, in contrast to earlier results in the warmest scenario simulation one ice-free winter out of 96 seasons was found. Although wind speed changes are uniform, extreme sea levels may increase more than the mean sea level. In two out of four projections significant changes of 100-year surge heights were found.  相似文献   

8.
Abstract

This study treats the energy balance during fast‐ice and floating‐ice conditions and examines overall seasonal patterns. The rate of ablation of the fast ice was controlled equally by net radiation and air temperature. The ratio of net/solar radiation increased 2.5 times during the ablation period owing to the decrease in ice albedo. Air temperature in the ablation zone was up to 8°C colder than that over the adjacent snow‐free terrestrial surface and remained near 0°Cfor the full ablation period. The sensible heat flux was small and downward (negative), whereas the evaporative heat flux was small and positive. Thus, the energy used in melting the ice was approximately equal to that provided by the net radiation. Above‐freezing air temperatures decreased the albedo through surface melting thus increasing net radiation. This combination of higher temperature and large net radiation was associated with offshore winds and resulted in large ablation relative to periods with colder onshore winds.

The floating‐ice period is one of great variability owing to changing ice conditions, variable current behaviour, tidal cycles and changing wind direction. The intertidal zone acts as a major heat sink, both early and late in the floating‐ice period. The turbulent heat fluxes were small and were either positive or negative. Nearly all of the energy from net radiation was used in melting ice and in warming tidal water during high tide and in warming the residual tidal ponds and in melting stranded ice rafts during low tide.

The overall study period, from May to September, included most of the season of positive radiation balance and above‐freezing temperatures. Winds were dominantly onshore in the first half of the period and equally onshore and offshore in the second half. Wind frequencies resembled longer term averages for other stations on James Bay and Hudson Bay. The ratio of net to solar radiation was at a maximum during the ice‐free period in August, whereas for adjacent terrestrial surfaces, it was largest at the summer solstice. Land‐sea breezes first developed in mid‐July and were influential in making offshore winds the dominant nocturnal regime. As a result, offshore winds were associated with small magnitudes of net radiation. Onshore winds were more than 5°C colder than those blowing offshore and their vapour pressure deficits were three times smaller. Convective heat fluxes were small for onshore winds and very small and usually negative for offshore winds. For all wind directions throughout the period, most of the available radiant energy was used to melt ice and to heat the sea water. This is a pattern similar to that of the ice‐covered or open sea and dissimilar to that of the adjacent terrestrial environment. It implies that the main energy‐balance transitions, during onshore airflow, occur at the high‐tide line.  相似文献   

9.
The ability of modern climate models to simulate ice season length in the Arctic, its recent changes and navigation season on Arctic marine routes along the Eurasian and the North American coastlines is evaluated using satellite ice cover observations for 1979–2007. Simulated mean sea ice season duration fits remarkably well to satellite observations and so do the simulated 20th century changes using historical forcing. This provides confidence to extend the analysis to projections for the twenty-first century. The navigation season for the Northern Sea Route (NSR) and Northwest Passage (NWP), alternative sea routes from the North Atlantic to Asia, will considerably increase during this century. The models predict prolongation of the season with a free passage from 3 to 6 months for the NSR and from 2 to 4 months for the NWP by the end of twenty-first century according to A1B scenario of the IPCC. This suggests that transit through the NSR from Western Europe to the Far East may be up to 15% more profitable in comparison to Suez Canal transit by the end of the twenty-first century.  相似文献   

10.
Climate change in the twenty-first century, projected by a large ensemble average of global coupled models forced by a mid-range (A1B) radiative forcing scenario, is downscaled to Climate Divisions across the western United States. A simple empirical downscaling technique is employed, involving model-projected linear trends in temperature or precipitation superimposed onto a repetition of observed twentieth century interannual variability. This procedure allows the projected trends to be assessed in terms of historical climate variability. The linear trend assumption provides a very close approximation to the time evolution of the ensemble-average climate change, while the imposition of repeated interannual variability is probably conservative. These assumptions are very transparent, so the scenario is simple to understand and can provide a useful baseline assumption for other scenarios that may incorporate more sophisticated empirical or dynamical downscaling techniques. Projected temperature trends in some areas of the western US extend beyond the twentieth century historical range of variability (HRV) of seasonal averages, especially in summer, whereas precipitation trends are relatively much smaller, remaining within the HRV. Temperature and precipitation scenarios are used to generate Division-scale projections of the monthly palmer drought severity index (PDSI) across the western US through the twenty-first century, using the twentieth century as a baseline. The PDSI is a commonly used metric designed to describe drought in terms of the local surface water balance. Consistent with previous studies, the PDSI trends imply that the higher evaporation rates associated with positive temperature trends exacerbate the severity and extent of drought in the semi-arid West. Comparison of twentieth century historical droughts with projected twenty-first century droughts (based on the prescribed repetition of twentieth century interannual variability) shows that the projected trend toward warmer temperatures inhibits recovery from droughts caused by decade-scale precipitation deficits.  相似文献   

11.
The fourth version of the atmosphere-ocean general circulation (AOGCM) model developed at the Institut Pierre-Simon Laplace (IPSL-CM4) is used to investigate the mechanisms influencing the Arctic freshwater balance in response to anthropogenic greenhouse gas forcing. The freshwater influence on the interannual variability of deep winter oceanic convection in the Nordic Seas is also studied on the basis of correlation and regression analyses of detrended variables. The model shows that the Fram Strait outflow, which is an important source of freshwater for the northern North Atlantic, experiences a rapid and strong transition from a weak state toward a relatively strong state during 1990–2010. The authors propose that this climate shift is triggered by the retreat of sea ice in the Barents Sea during the late twentieth century. This sea ice reduction initiates a positive feedback in the atmosphere-sea ice-ocean system that alters both the atmospheric and oceanic circulations in the Greenland-Iceland-Norwegian (GIN)-Barents Seas sector. Around year 2080, the model predicts a second transition threshold beyond which the Fram Strait outflow is restored toward its original weak value. The long-term freshening of the GIN Seas is invoked to explain this rapid transition. It is further found that the mechanism of interannual changes in deep mixing differ fundamentally between the twentieth and twenty-first centuries. This difference is caused by the dominant influence of freshwater over the twenty-first century. In the GIN Seas, the interannual changes in the liquid freshwater export out of the Arctic Ocean through Fram Strait combined with the interannual changes in the liquid freshwater import from the North Atlantic are shown to have a major influence in driving the interannual variability of the deep convection during the twenty-first century. South of Iceland, the other region of deep water renewal in the model, changes in freshwater import from the North Atlantic constitute the dominant forcing of deep convection on interannual time scales over the twenty-first century.  相似文献   

12.
Future climate in the Pacific Northwest   总被引:4,自引:2,他引:2  
Climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) on the whole reproduce the observed seasonal cycle and twentieth century warming trend of 0.8°C (1.5°F) in the Pacific Northwest, and point to much greater warming for the next century. These models project increases in annual temperature of, on average, 1.1°C (2.0°F) by the 2020s, 1.8°C (3.2°F) by the 2040s, and 3.0°C (5.3°F) by the 2080s, compared with the average from 1970 to 1999, averaged across all climate models. Rates of warming range from 0.1°C to 0.6°C (0.2°F to 1.0°F) per decade. Projected changes in annual precipitation, averaged over all models, are small (+1% to +2%), but some models project an enhanced seasonal cycle with changes toward wetter autumns and winters and drier summers. Changes in nearshore sea surface temperatures, though smaller than on land, are likely to substantially exceed interannual variability, but coastal upwelling changes little. Rates of twenty-first century sea level rise will depend on poorly known factors like ice sheet instability in Greenland and Antarctica, and could be as low as twentieth century values (20 cm, 8) or as large as 1.3 m (50).  相似文献   

13.
Various measurements from the Surface Heat Flux of the Arctic Ocean (SHEBA) experiment have been combined to study structures and processes producing the onset and end of summer melt over Arctic sea ice. The analysis links the surface energy budget to free-troposphere synoptic variables, clouds, precipitation, and in-ice temperatures. The key results are (1) SHEBA melt-season transitions are associated with atmospheric synoptic events (2) onset of melt clearly occurs on May 28, while the end of melt is produced by a sequence of three atmospheric storm events over a 28-day period producing step-like reductions in the net surface energy flux. The last one occurs on August 22.; (3) melt onset is primarily due to large increases in the downwelling longwave radiation and modest decreases in the surface albedo; (4) decreases in the downwelling longwave radiation occur for all end-of-melt transition steps, while increases in surface albedo occur for the first two; (5) decreases in downwelling shortwave radiation contribute only to the first end-of-melt transition step; (6) springtime free-tropospheric warming preconditions the atmosphere–ice system for the subsequent melt onset; and (7) melt-season transitions also mark transitions in system responses to radiative energy flux changes because of invariant melt-season surface temperatures. The extensive SHEBA observations enable an understanding of the complex processes not available from other field program data. The analysis provides a basis for future testing of the generality of the results, and contributes to better physical understanding of multi-year analyses of melt-season trends from less extensive data sets.  相似文献   

14.
We examine the representation of the mean state and interannual variability of Antarctic sea ice in six simulations of the twentieth century from coupled models participating in the Intergovernmental Panel on Climate Change fourth assessment report. The simulations exhibit a largely seasonal southern hemisphere ice cover, as observed. There is a considerable scatter in the monthly simulated climatological ice extent among different models, but no consistent bias when compared to observations. The scatter in maximum winter ice extent among different models is correlated to the strength of the climatological zonal winds suggesting that wind forced ice transport is responsible for much of this scatter. Observations show that the leading mode of southern hemisphere ice variability exhibits a dipole structure with anomalies of one sign in the Atlantic sector associated with anomalies of the opposite sign in the Pacific sector. The observed ice anomalies also exhibit eastward propagation with the Antarctic circumpolar current, as part of the documented Antarctic circumpolar wave phenomenon. Many of the models do simulate dipole-like behavior in sea ice anomalies as the leading mode of ice variability, but there is a large discrepancy in the eastward propagation of these anomalies among the different models. Consistent with observations, the simulated Antarctic dipole-like variations in the ice cover are led by sea-level pressure anomalies in the Amundsen/ Bellingshausen Sea. These are associated, to different degrees in different models, with both the southern annular mode and the El Nino-Southern Oscillation (ENSO). There are indications that the magnitude of the influence of ENSO on the southern hemisphere ice cover is related to the strength of ENSO events simulated by the different models.  相似文献   

15.
During a ship voyage from Tasmania to Antarctica in summer 2000/01, radiative and meteorological measurements were continuously made, from which the surface energy budget was calculated. Sea conditions throughout the voyage ranged from open water to broken pack and finally to snow-covered unbroken sea ice in McMurdo Sound. The global radiation increased on average during the trip (to higher latitudes) as we travelled poleward. The net radiation, which was positive (toward the surface) on average, decreased however, mostly due to the increase in surface albedo. For open water, most of the net radiation is used for evapouration (61%), while for broken sea-ice conditions, nearly all energy is used for melting of the sea ice or heating of the ocean (96%). For unbroken snow-covered sea ice, the net radiation lies close to zero, due to the high surface albedo, which reached a mean value of 0.81. The sensible heat flux becomes the largest heat source and nearly all the energy is used for warming of the surface. Finally, a Radarsat image, on which the ship track was visible, was used to compare the ship observations with satellite derived ice types.  相似文献   

16.
A dynamical wave model implemented over the North Pacific Ocean was forced with winds from three coupled global climate models (CGCMs) run under a medium-to-high scenario for greenhouse gas emissions through the twenty-first century. The results are analyzed with respect to changes in upper quantiles of significant wave height (90th and 99th percentile HS) during boreal winter. The three CGCMs produce surprisingly similar patterns of change in winter wave climate during the century, with waves becoming 10–15 % smaller over the lower mid-latitudes of the North Pacific, particularly in the central and western ocean. These decreases are closely associated with decreasing windspeeds along the southern flank of the main core of the westerlies. At higher latitudes, 99th percentile wave heights generally increase, though the patterns of change are less uniform than at lower latitudes. The increased wave heights at high latitudes appear to be due a variety of wind-related factors including both increased windspeeds and changes in the structure of the wind field, these varying from model to model. For one of the CGCMs, a commonly used statistical approach for estimating seasonal quantiles of HS on the basis of seasonal mean sea level pressure (SLP) is used to develop a regression model from 60 years of twentieth century data as a training set, and then applied using twenty-first century SLP data. The statistical model reproduces the general pattern of decreasing twenty-first century wave heights south of ~40 N, but underestimates the magnitude of the changes by ~50–70 %, reflecting relatively weak coupling between sea level pressure and wave heights in the CGCM data and loss of variability in the statistically projected wave heights.  相似文献   

17.
青藏高原地区地气系统太阳辐射能收支的研究   总被引:7,自引:0,他引:7  
钟强 《高原气象》1989,8(1):1-12
本文利用1982年8月—1983年7月Nimbus-7的月平均行星反射率资料和根据卫星资料得到的地面总辐射、地表反射率的估算结果,分析了青藏高原地区地气系统(大气顶)的太阳辐射能收支和地表、大气对太阳辐射吸收的时空变化特征,给出了表征太阳辐射能收支的一些基本参数,讨论了以行星反射率为基本参数表征大气、地表对太阳辐射吸收的参数化方法。分析表明:过渡季节5月份的行星反射率极小值的出现对青藏高原地区太阳辐射能收支有重要调节作用;全年平均而言,青藏高原地区被地气系统反射和被大气、地表吸收的太阳辐射的比例为37:18:45。  相似文献   

18.
The 2009 ArcticNet expedition was a field campaign in the Amundsen Gulf–eastern Beaufort Sea region from mid-July to the beginning of November aboard the CCGS Amundsen that provided an opportunity to describe the all-sky surface radiation and the clear-sky surface energy budgets from summer to freeze-up in the data sparse western maritime Arctic. Because the fractional area of open water was generally larger than the fractional area of ice floes, the net radiation at the water surface controlled the radiation budget. Because the water albedo is much less than the albedo of the ice floes, the extent and duration of open water in summer is an important albedo feedback mechanism. From summer to freeze-up, the net all-sky shortwave radiation declined steadily as the solar angle lowered, while coincidently the net all-sky longwave radiation became increasingly negative. The all-sky net surface radiation switched from positive in summer to negative during the freeze-up period. From summer to freeze-up, both upward and downward turbulent heat fluxes occurred. In summer, a positive surface energy budget residual contributed to the melting of ice floes and/or to the warming of the Arctic Ocean's mixed layer. During the freeze-up period, with temperatures below approximately ?5°C, the residuals were mainly negative suggesting that heat loss from the ocean's mixed layer and heat released by the phase change of water were significant components of the energy budget's residual.  相似文献   

19.
Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models. The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from the literature and with locally calibrated ones. A measured, average albedo value of 0.25 was used at the high-latitude sites. A fixed albedo value of 0.25 resulted in less bias and scatter at the mid-latitude sites compared to other albedo values. When used with model coefficients calibrated locally or developed for specific climate regimes, the predictions of the physically based model had slightly lower bias and scatter than the empirical models. When used with their original model coefficients, the physically based model had a higher bias than the measurement error of the net radiation instruments used. The performance of the empirical models was nearly identical at all sites. Since the empirical models were easier to use and simpler to calibrate than the physically based models, the results indicate that the empirical models can be used as a good substitute for the physically based ones when available meteorological input data is limited. Model predictions were found to have a higher bias and scatter when using summed calculated hourly time steps compared to using daily input data.  相似文献   

20.
The snow/sea-ice albedo was measured over coastal landfast sea ice in Prydz Bay, East Antarctica(off Zhongshan Station)during the austral spring and summer of 2010 and 2011. The variation of the observed albedo was a combination of a gradual seasonal transition from spring to summer and abrupt changes resulting from synoptic events, including snowfall, blowing snow, and overcast skies. The measured albedo ranged from 0.94 over thick fresh snow to 0.36 over melting sea ice. It was found that snow thickness was the most important factor influencing the albedo variation, while synoptic events and overcast skies could increase the albedo by about 0.18 and 0.06, respectively. The in-situ measured albedo and related physical parameters(e.g., snow thickness, ice thickness, surface temperature, and air temperature) were then used to evaluate four different snow/ice albedo parameterizations used in a variety of climate models. The parameterized albedos showed substantial discrepancies compared to the observed albedo, particularly during the summer melt period, even though more complex parameterizations yielded more realistic variations than simple ones. A modified parameterization was developed,which further considered synoptic events, cloud cover, and the local landfast sea-ice surface characteristics. The resulting parameterized albedo showed very good agreement with the observed albedo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号