首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We investigate the migration of massive extrasolar planets caused by gravitational interaction with a viscous protoplanetary disc. We show that a model in which planets form at 5 au at a constant rate, before migrating, leads to a predicted distribution of planets that is a steeply rising function of log( a ), where a is the orbital radius. Between 1 and 3 au, the expected number of planets per logarithmic interval in a roughly doubles. We demonstrate that, once selection effects are accounted for, this is consistent with current data, and then extrapolate the observed planet fraction to masses and radii that are inaccessible to current observations. In total, approximately 15 per cent of stars targeted by existing radial velocity searches are predicted to possess planets with masses  0.3< M p sin( i )<10 M J  and radii  0.1< a <5 au  . A third of these planets (around 5 per cent of the target stars) lie at the radii most amenable to detection via microlensing. A further  5–10  per cent of stars could have planets at radii of  5< a <8 au  that have migrated outwards. We discuss the probability of forming a system (akin to the Solar system) in which significant radial migration of the most massive planet does not occur. Approximately  10–15  per cent of systems with a surviving massive planet are estimated to fall into this class. Finally, we note that a smaller fraction of low-mass planets than high-mass planets is expected to survive without being consumed by the star. The initial mass function for planets is thus predicted to rise more steeply towards small masses than the observed mass function.  相似文献   

2.
We consider the minimum mass planet, as a function of radius, that is capable of opening a gap in an α-accretion disc. We estimate that a half-Jupiter mass planet can open a gap in a disc with accretion rate     for viscosity parameter  α= 0.01  , and solar mass and luminosity. The minimum mass is approximately proportional to     . This estimate can be used to rule out the presence of massive planets in gapless accretion discs. We identify two radii at which an inwardly migrating planet may become able to open a gap and so slow its migration; the radius at which the heating from viscous dissipation is similar to that from stellar radiation in a flared disc, and the radius at which the disc becomes optically thin in a self-shadowed disc. In the inner portions of the disc, we find that the minimum planet mass required to open a gap is only weakly dependent on radius. If a migrating planet is unable to open a gap by the time it reaches either of the transition radii, then it is likely to be lost on to the star. If a gap-opening planet cuts off disc accretion allowing the formation of a central hole or clearing in the disc then we would estimate that the clearing radius would approximately be proportional to the stellar mass.  相似文献   

3.
We present the results of hydrodynamic simulations of Jovian mass protoplanets that form in circumbinary discs. The simulations follow the orbital evolution of the binary plus protoplanet system acting under their mutual gravitational forces, and forces exerted by the viscous circumbinary disc. The evolution involves the clearing of the inner circumbinary disc initially, so that the binary plus protoplanet system orbits within a low density cavity. Continued interaction between disc and protoplanet causes inward migration of the planet towards the inner binary. Subsequent evolution can take three distinct paths: (i) the protoplanet enters the 4 : 1 mean motion resonance with the binary, but is gravitationally scattered through a close encounter with the secondary star; (ii) the protoplanet enters the 4 : 1 mean motion resonance, the resonance breaks, and the planet remains in a stable orbit just outside the resonance; (iii) when the binary has initial eccentricity   e bin≥ 0.2  , the disc becomes eccentric, leading to a stalling of the planet migration, and the formation of a stable circumbinary planet.
These results have implications for a number of issues in the study of extrasolar planets. The ejection of protoplanets in close binary systems provides a source of 'free-floating planets', which have been discovered recently. The formation of a large, tidally truncated cavity may provide an observational signature of circumbinary planets during formation. The existence of protoplanets orbiting stably just outside a mean motion resonance (4 : 1) in the simulations indicate that such sites may harbour planets in binary star systems, and these could potentially be observed. Finally, the formation of stable circumbinary planets in eccentric binary systems indicates that circumbinary planets may not be uncommon.  相似文献   

4.
On the migration of a system of protoplanets   总被引:1,自引:0,他引:1  
The evolution of a system consisting of a protoplanetary disc with two embedded Jupiter-sized planets is studied numerically. The disc is assumed to be flat and non-self-gravitating; this is modelled by the planar (two-dimensional) Navier–Stokes equations. The mutual gravitational interaction of the planets and the star, and the gravitational torques of the disc acting on the planets and the central star are included. The planets have an initial mass of one Jupiter mass M Jup each, and the radial distances from the star are one and two semimajor axes of Jupiter, respectively.
During the evolution a joint wide annular gap is created by the planets. Both planets increase their mass owing to accretion of gas from the disc: after about 2500 orbital periods of the inner planet it has reached a mass of 2.3  M Jup, while the outer planet has reached a mass of 3.2  M Jup. The net gravitational torques exerted by the disc on the planets result in an inward migration of the outer planet on time-scales comparable to the viscous evolution time of the disc. The semimajor axis of the inner planet remains constant as there is very little gas left in its vicinity to induce any migration. When the distance of close approach eventually becomes smaller than the mutual Hill radius, the eccentricities increase strongly and the system may become unstable.
If disc depletion occurs rapidly enough before the planets come too close to each other, a stable system similar to our own Solar system may remain. Otherwise the orbits may become unstable and produce systems like υ And.  相似文献   

5.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   

6.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

7.
We present a numerical study of rapid, so-called type III migration for Jupiter-sized planets embedded in a protoplanetary disc. We limit ourselves to the case of inward migration, and study in detail its evolution and physics, concentrating on the structure of the corotation and circumplanetary regions, and processes for stopping migration. We also consider the dependence of the migration behaviour on several key parameters. We perform this study using the results of global, two-dimensional hydrodynamical simulations with adaptive mesh refinement. The initial conditions are chosen to satisfy the condition for rapid inward migration. We find that type III migration can be divided into two regimes, fast and slow. The structure of the co-orbital region, mass accumulation rate and migration behaviour differ between these two regimes. All our simulations show a transition from the fast to the slow regime, ending type III migration well before reaching the star. The stopping radius is found to be larger for more massive planets and less massive discs. A sharp density drop is also found to be an efficient stopping mechanism. In the fast migration regime the migration rate and induced eccentricity are lower for less massive discs, but almost do not depend on planet mass. Eccentricity is damped on the migration time-scale.  相似文献   

8.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

9.
Infrared spectra from the Spitzer Space Telescope ( SSC ) of many debris discs are well fit with a single blackbody temperature which suggest clearings within the disc. We assume that clearings are caused by orbital instability in multiple planet systems with similar configurations to our own. These planets remove dust-generating planetesimal belts as well as dust generated by the outer disc that is scattered or drifts into the clearing. From numerical integrations, we estimate a minimum planet spacing required for orbital instability (and so planetesimal and dust removal) as a function of system age and planet mass. We estimate that a 108 yr old debris disc with a dust disc edge at a radius of 50 au hosted by an A star must contain approximately five Neptune mass planets between the clearing radius and the iceline in order to remove all primordial objects within it. We infer that known debris disc systems contain at least a fifth of a Jupiter mass in massive planets. The number of planets and spacing required is insensitive to the assumed planet mass. However, an order of magnitude higher total mass in planets could reside in these systems if the planets are more massive.  相似文献   

10.
We use numerical simulations to model the migration of massive planets at small radii and compare the results with the known properties of 'hot Jupiters' (extrasolar planets with semimajor axes   a < 0.1  au). For planet masses   M pl sin  i > 0.5 M J  , the evidence for any 'pile-up' at small radii is weak (statistically insignificant), and although the mass function of hot Jupiters is deficient in high-mass planets as compared to a reference sample located further out, the small sample size precludes definitive conclusions. We suggest that these properties are consistent with disc migration followed by entry into a magnetospheric cavity close to the star. Entry into the cavity results in a slowing of migration, accompanied by a growth in orbital eccentricity. For planet masses in excess of 1 Jupiter mass we find eccentricity growth time-scales of a few ×105 yr, suggesting that these planets may often be rapidly destroyed. Eccentricity growth appears to be faster for more massive planets which may explain changes in the planetary mass function at small radii and may also predict a pile-up of lower mass planets, the sample of which is still incomplete.  相似文献   

11.
The migration and growth of protoplanets in protostellar discs   总被引:1,自引:0,他引:1  
We investigate the gravitational interaction of a Jovian-mass protoplanet with a gaseous disc with aspect ratio and kinematic viscosity expected for the protoplanetary disc from which it formed. Different disc surface density distributions are investigated. We focus on the tidal interaction with the disc with the consequent gap formation and orbital migration of the protoplanet. Non-linear two-dimensional hydrodynamic simulations are employed using three independent numerical codes.
A principal result is that the direction of the orbital migration is always inwards and such that the protoplanet reaches the central star in a near-circular orbit after a characteristic viscous time‐scale of ∼104 initial orbital periods. This is found to be independent of whether the protoplanet is allowed to accrete mass or not. Inward migration is helped by the disappearance of the inner disc, and therefore the positive torque it would exert, because of accretion on to the central star. Maximally accreting protoplanets reach about 4 Jovian masses on reaching the neighbourhood of the central star. Our results indicate that a realistic upper limit for the masses of closely orbiting giant planets is ∼5 Jupiter masses, if they originate in protoplanetary discs similar to the minimum-mass solar nebula. This is because of the reduced accretion rates obtained for planets of increasing mass.
Assuming that some process such as termination of the inner disc through a magnetospheric cavity stops the migration, the range of masses estimated for a number of close orbiting giant planets as well as their inward orbital migration can be accounted for by consideration of disc–protoplanet interactions during the late stages of giant planet formation.  相似文献   

12.
Metallicity, planetary formation and migration   总被引:1,自引:0,他引:1  
Recent observations show a clear correlation between the probability of hosting a planet and the metallicity of the parent star. As radial velocity surveys are biased, however, towards detecting planets with short orbital periods, the probability–metallicity correlation could merely reflect a dependence of migration rates on metallicity. We investigated the possibility, but find no basis to suggest that the migration process is sensitive to the metallicity. The indication is, therefore, that a higher metallicity results in a higher probability for planet  formation .  相似文献   

13.
Dynamical relaxation and massive extrasolar planets   总被引:1,自引:0,他引:1  
Following the suggestion of Black that some massive extrasolar planets may be associated with the tail of the distribution of stellar companions, we investigate a scenario in which 5 N 100 planetary mass objects are assumed to form rapidly through a fragmentation process occuring in a disc or protostellar envelope on a scale of 100 au. These are assumed to have formed rapidly enough through gravitational instability or fragmentation that their orbits can undergo dynamical relaxation on a time-scale of ∼100 orbits.
Under a wide range of initial conditions and assumptions, the relaxation process ends with either (i) one potential 'hot Jupiter' plus up to two 'external' companions, i.e. planets orbiting near the outer edge of the initial distribution; (ii) one or two 'external' planets or even none at all; (iii) one planet on an orbit with a semi-major axis of 10 to 100 times smaller than the outer boundary radius of the inital distribution together with an 'external' companion. Most of the other objects are ejected and could contribute to a population of free-floating planets. Apart from the potential 'hot Jupiters', all the bound objects are on orbits with high eccentricity, and also with a range of inclination with respect to the stellar equatorial plane. We found that, apart from the close orbiters, the probability of ending up with a planet orbiting at a given distance from the central star increases with the distance. This is because of the tendency of the relaxation process to lead to collisions with the central star. The scenario we envision here does not impose any upper limit on the mass of the planets. We discuss the application of these results to some of the more massive extrasolar planets.  相似文献   

14.
V838 Mon is the prototype of a new class of objects. Understanding the nature of its multistage outburst and similar systems is challenging. So far, several scenarios have been invoked to explain this group of stars. In this work, the planets-swallowing model for V838 Mon is further investigated, taking into account the findings that the progenitor is most likely a massive B-type star. We find that the super-Eddington luminosity during the eruption can explain the fast rising times of the three peaks in the optical light curve. We used two different methods to estimate the location where the planets were consumed. There is a nice agreement between the values obtained from the luminosities of the peaks and from their rising time-scale. We estimate that the planets were stopped at a typical distance of one solar radius from the centre of the host giant star. The planets-devouring model seems to give a satisfying explanation to the differences in the luminosities and rising times of the three peaks in the optical light curve of V838 Mon. The peaks may be explained by the consumption of three planets or alternatively by three steps in the terminal falling process of a single planet. We argue that only the binary merger and the planets-swallowing models are consistent with the observations of the new type of stars defined by V838 Mon.  相似文献   

15.
The irradiation of protoplanetary discs by central stars is the main heating mechanism for discs, resulting in their flared geometric structure. In a series of papers, we investigate the deep links between two-dimensional self-consistent disc structure and planetary migration in irradiated discs, focusing particularly on those around M stars. In this first paper, we analyse the thermal structure of discs that are irradiated by an M star by solving the radiative transfer equation by means of a Monte Carlo code. Our simulations of irradiated hydrostatic discs are realistic and self-consistent in that they include dust settling with multiple grain sizes  ( N = 15)  , the gravitational force of an embedded planet on the disc and the presence of a dead zone (a region with very low levels of turbulence) within it. We show that dust settling drives the temperature of the mid-plane from an   r −3/5  distribution (well mixed dust models) towards an   r −3/4  . The dead zone, meanwhile, leaves a dusty wall at its outer edge because dust settling in this region is enhanced compared to the active turbulent disc at larger disc radii. The disc heating produced by this irradiated wall provides a positive gradient region of the temperature in the dead zone in front of the wall. This is crucially important for slowing planetary migration because Lindblad torques are inversely proportional to the disc temperature. Furthermore, we show that low turbulence of the dead zone is self-consistently induced by dust settling, resulting in the Kelvin–Helmholtz instability (KHI). We show that the strength of turbulence arising from the KHI in the dead zone is  α= 10−5  .  相似文献   

16.
To date, two planetary systems have been discovered with close-in, terrestrial-mass planets     . Many more such discoveries are anticipated in the coming years with radial velocity and transit searches. Here we investigate the different mechanisms that could form 'hot Earths' and their observable predictions. Models include: (1) in situ accretion; (2) formation at larger orbital distance followed by inward 'type 1' migration; (3) formation from material being 'shepherded' inward by a migrating gas giant planet; (4) formation from material being shepherded by moving secular resonances during dispersal of the protoplanetary disc; (5) tidal circularization of eccentric terrestrial planets with close-in perihelion distances and (6) photoevaporative mass-loss of a close-in giant planet. Models 1–4 have been validated in previous work. We show that tidal circularization can form hot Earths, but only for relatively massive planets     with very close-in perihelion distances (≲0.025 au), and even then the net inward movement in orbital distance is at most only 0.1–0.15 au. For planets of less than     , photoevaporation can remove the planet's envelope and leave behind the solid core on a Gyr time-scale, but only for planets inside 0.025–0.05 au. Using two quantities that are observable by current and upcoming missions, we show that these models each produce unique signatures, and can be observationally distinguished. These observables are the planetary system architecture (detectable with radial velocities, transits and transit timing) and the bulk composition of transiting close-in terrestrial planets (measured by transits via the planet's radius).  相似文献   

17.
We investigate the effect of a planet on an eccentric orbit on a two-dimensional low-mass gaseous disc. At a planet eccentricity above the planet's Hill radius divided by its semimajor axis, we find that the disc morphology differs from that exhibited by a disc containing a planet in a circular orbit. An eccentric gap is created with eccentricity that can exceed the planet's eccentricity and precesses with respect to the planet's orbit. We find that a more massive planet is required to open a gap when the planet is on an eccentric orbit. We attribute this behaviour to spiral density waves excited at corotation resonances by the eccentric planet. These act to increase the disc's eccentricity and exert a torque opposite in sign to that exerted by the Lindblad resonances. The reduced torque makes it more difficult for waves driven by the planet to overcome viscous inflow in the disc.  相似文献   

18.
We show that the dearth of brown dwarfs in short-period orbits around Solar-mass stars – the brown dwarf desert – can be understood as a consequence of inward migration within an evolving protoplanetary disc. Brown dwarf secondaries forming at the same time as the primary star have masses which are comparable to the initial mass of the protoplanetary disc. Subsequent disc evolution leads to inward migration, and destruction of the brown dwarf, via merger with the star. This is in contrast with massive planets, which avoid this fate by forming at a later epoch when the disc is close to being dispersed. Within this model, a brown dwarf desert arises because the mass at the hydrogen-burning limit is coincidentally comparable to the initial disc mass for a Solar mass star. Brown dwarfs should be found in close binaries around very low mass stars, around other brown dwarfs, and around Solar-type stars during the earliest phases of star formation.  相似文献   

19.
We investigate the gravitational interaction between a planet and an optically thin protoplanetary disc, performing local three-dimensional hydrodynamical simulations. In the present study, we take account of radiative energy transfer in optically thin discs. Before the stage of planetary accretion, dust opacity is expected to decrease significantly because of grain growth and planetesimal formation. Thus, it would be reasonable to consider optically thin discs in the disc–planet interaction. Furthermore, we focus on small planets that can neither capture disc gas nor open a disc gap. The one-sided torque exerted on a planet by an optically thin disc is examined for various values of the disc optical thickness (<1). In optically thin discs, the temperature behind the density waves is lower than the unperturbed value because of radiative cooling. Heating due to shock dissipation is less effective than radiative cooling. Because of radiative cooling, the density distribution around the planet is not axisymmetric, which exerts an additional torque on the planet. The torque enhancement becomes maximum when the cooling time is comparable with the Keplerian period. The enhancement is significant for low-mass planets. For planets with  3 M  , the additional one-sided torque can be 40 per cent of the torque in the isothermal case. The radiative cooling is expected to change the differential torque and the migration speed of planets, too.  相似文献   

20.
Dynamical relaxation and the orbits of low-mass extrasolar planets   总被引:1,自引:0,他引:1  
We consider the evolution of a system containing a population of massive planets formed rapidly through a fragmentation process occurring on a scale on the order of 100 au and a lower mass planet that assembles in a disc on a much longer time-scale. During the formation phase, the inner planet is kept on a circular orbit owing to tidal interaction with the disc, while the outer planets undergo dynamical relaxation. Interaction with the massive planets left in the system after the inner planet forms may increase the eccentricity of the inner orbit to high values, producing systems similar to those observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号