首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CoRoT (Convection, Rotation and Transit) is a mission of high-accuracy photometry with two scientific programmes: asteroseismology and planet finding, using CCDs as detectors. Ten 2048×4096 CCDs manufactured by E2V (42-80) were calibrated on Meudon test bench in order to choose the best ones for flight. A very high instrument stability is needed. Taking into account the environmental perturbations (temperature, attitude control system jitter, radiations, etc.) we studied sensitivity of CCD gain and quantum efficiency to temperature and sensitivity of the output signal to bias voltages. Special attention was paid to pixel capacity and noise sources coming from dark current and pixel response non-uniformity. The calibration results together with the expected voltages and temperature fluctuations are compared with the specifications.  相似文献   

3.
Multi-imaging and Bayesian estimation for photon counting with EMCCDs   总被引:1,自引:0,他引:1  
A multi-imaging strategy is proposed and experimentally tested to improve the accuracy of photon counting with an electron multiplying CCD (EMCCD), by taking into account the random nature of its on-chip gain and the possibility of multiple photodetection events on one pixel. This strategy is based on Bayesian estimation on each image, with a priori information given by the sum of the images. The method works even for images with large dynamic range, with more improvement in the low light level areas. In these areas, two thirds of the variance added by the EMCCD in a conventional imaging mode are removed, making the physical photon noise predominant in the detected image.  相似文献   

4.
5.
ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics   总被引:1,自引:0,他引:1  
ULTRACAM is a portable, high-speed imaging photometer designed to study faint astronomical objects at high temporal resolutions. ULTRACAM employs two dichroic beamsplitters and three frame-transfer CCD cameras to provide three-colour optical imaging at frame rates of up to 500 Hz. The instrument has been mounted on both the 4.2-m William Herschel Telescope on La Palma and the 8.2-m Very Large Telescope in Chile, and has been used to study white dwarfs, brown dwarfs, pulsars, black hole/neutron star X-ray binaries, gamma-ray bursts, cataclysmic variables, eclipsing binary stars, extrasolar planets, flare stars, ultracompact binaries, active galactic nuclei, asteroseismology and occultations by Solar System objects (Titan, Pluto and Kuiper Belt objects). In this paper we describe the scientific motivation behind ULTRACAM, present an outline of its design and report on its measured performance.  相似文献   

6.
The bright limit to the dynamic range of intensified CCD photon-counting detectors is governed by coincidence losses. In this paper a theoretical analysis of the loss mechanisms is carried out and verified using laboratory data. For applications where the input source is stable, such as star field imaging from space, the theoretical dynamic-range curve can then be used for accurate quantification.  相似文献   

7.
Group delay fringe tracking using spectrally dispersed fringes is suitable for stabilizing the optical path difference in ground-based astronomical optical interferometers in low light level situations. We discuss the performance of group delay tracking algorithms when the effects of atmospheric dispersion, high-frequency atmospheric temporal phase variations, non-ideal path modulation, non-ideal spectral sampling, and the detection artifacts introduced by electron-multiplying CCDs are taken into account, and we present ways in which the tracking capability can be optimized in the presence of these effects.  相似文献   

8.
An overview is given of the absolute flux calibration of the ISOCAMdetectors. The flux calibration is based on observations of standard stars selected from the Ground Based Preparatory Programme, for which Kurucz stellar models are available. No dependencies of the responsivity on different configurations of thecamera were found. No trend of changing responsivity is found throughout the mission for the SW and LW detectors. There exists a decreasing responsivity of about 5% for LW during the orbit.  相似文献   

9.
与传统CCD (Charge Coupled Device)相机相比, s COMS (scientific Complementary Metal Oxide Semiconductor)相机被广泛装备于超大天区巡天设备,与传统CCD相机不同的是sCMOS相机采用卷帘式快门,因此对其进行测光精度的分析工作是很有意义的.首先,将s CMOS相机拍摄的图像与UCAC2 (The Second U.S. Naval Observatory CCD Astrograph Catalog)星表进行匹对,识别图像中的UCAC2标准星.接着对图中的标准星进行测光并提取测光数据进行最小二乘直线拟合,获得了相应的系统转换系数并得到仪器星等至标准星等的转换公式.然后,将转化后的仪器星等和标准星等做差并计算相应的均方根误差.最后,利用计算得到的均方根误差评估sCMOS相机的测光精度,并将标准星按星等划分后,分析了相应的测光误差.计算结果表明在标准测光夜测量亮度亮于14等的星时,测光精度优于0.15 mag.通过实测精度分析可知卷帘快门sCOMS相机具有较高的测光精度,基本满足空间碎片巡天观测的要求.  相似文献   

10.
Exoplanetary transit and stellar oscillation surveys require a very high precision photometry. The instrumental noise has therefore to be minimized. First, we perform a semi‐analytical model of different noise sources. We show that the noise due the CCD electrodes can be overcome using a Gaussian PSF (Point Spread Function) of full width half maximum larger than 1.6 pixels. We also find that for a PSF size of a few pixels, the photometric aperture has to be at least 2.5 times larger than the PSF full width half maximum. Then, we compare a front‐ with a back‐illuminated CCD through a Monte‐Carlo simulation. Both cameras give the same results for a PSF full width half maximum larger than 1.5 pixels. All these simulations are applied to the A STEP (Antarctica Search for Transiting Extrasolar Planets) project. As a result, we choose a front‐illuminated camera for A STEP because of its better resolution and lower price, and we will use a PSF larger than 1.6 pixels. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
The key features of the matphot algorithm for precise and accurate stellar photometry and astrometry using discrete point spread functions (PSFs) are described. A discrete PSF is a sampled version of a continuous PSF, which describes the two-dimensional probability distribution of photons from a point source (star) just above the detector. The shape information about the photon scattering pattern of a discrete PSF is typically encoded using a numerical table (matrix) or an FITS (Flexible Image Transport System) image file. Discrete PSFs are shifted within an observational model using a 21-pixel-wide damped sinc function, and position-partial derivatives are computed using a five-point numerical differentiation formula. Precise and accurate stellar photometry and astrometry are achieved with undersampled CCD (charge-coupled device) observations by using supersampled discrete PSFs that are sampled two, three or more times more finely than the observational data. The precision and accuracy of the matphot algorithm is demonstrated by using the c -language mpd code to analyse simulated CCD stellar observations; measured performance is compared with a theoretical performance model. Detailed analysis of simulated Next Generation Space Telescope observations demonstrate that millipixel relative astrometry and mmag photometric precision is achievable with complicated space-based discrete PSFs.  相似文献   

13.
14.
The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We combine in a single framework the two complementary benefits of  χ2  template fits and empirical training sets used e.g. in neural nets:  χ2  is more reliable when its probability density functions (PDFs) are inspected for multiple peaks, while empirical training is more accurate when calibration and priors of query data and training set match. We present a  χ2  empirical method that derives PDFs from empirical models as a subclass of kernel regression methods, and apply it to the Sloan Digital Sky Survey Data Release 5 sample of >75 000 quasi-stellar objects, which is full of ambiguities. Objects with single-peak PDFs show <1 per cent outliers, rms redshift errors <0.05 and vanishing redshift bias. At   z > 2.5  , these figures are two times better. Outliers result purely from the discrete nature and limited size of the model, and rms errors are dominated by the intrinsic variety of object colours. PDFs classed as ambiguous provide accurate probabilities for alternative solutions and thus weights for using both solutions and avoiding needless outliers. E.g. the PDFs predict 78.0 per cent of the stronger peaks to be correct, which is true for 77.9 per cent of them. Redshift incompleteness is common in faint spectroscopic surveys and turns into a massive undetectable outlier risk above other performance limitations, but we can quantify residual outlier risks stemming from size and completeness of the model. We propose a matched  χ2  error scale for noisy data and show that it produces correct error estimates and redshift distributions accurate within Poisson errors. Our method can easily be applied to future large galaxy surveys, which will benefit from the reliability in ambiguity detection and residual risk quantification.  相似文献   

16.
17.
The numerical kernel approach to difference imaging has been implemented and applied to gravitational microlensing events observed by the PLANET collaboration. The effect of an error in the source-star coordinates is explored and a new algorithm is presented for determining the precise coordinates of the microlens in blended events, essential for accurate photometry of difference images. It is shown how the photometric reference flux need not be measured directly from the reference image but can be obtained from measurements of the difference images combined with the knowledge of the statistical flux uncertainties. The improved performance of the new algorithm, relative to isis2 , is demonstrated.  相似文献   

18.
We describe a procedure for the numerical modelling of astronomical interferometers, with particular relevance to far-infrared and submillimetre wavelengths. The scheme is based on identifying a set of modes that carry power from the sky to the detector. The procedure is extremely general, and can be used to model scalar or vector fields, in any state of coherence and polarization, the only limitation being that the propagation of a coherent field through the system be described by an integral transform, a constraint that is in practise always met.
We present simulations of ideal, multimode two-dimensional interferometers, and show that the modal theory reproduces the correct behaviour of both Michelson and Fizeau interferometers. We calculate simulated visibility data for a multimode bolometric Michelson interferometer, with a synthesized source, and produce a dirty map, recovering the original source with the usual artefacts associated with interferometers.  相似文献   

19.
For a spectrograph giving a fixed format spectrum,the quantum efficiency (QE) can be optimized for the different wavelengthsacross the CCD. It is shown that a slight modification of the conventionalsingle layer anti-reflection coating can give major improvements in QE forsuch instruments, while at the same time minimizing problems with fringingand stray light from the CCD.  相似文献   

20.
Our new algorithm for differential photometry solves the problem of identifying proper comparison stars without a prior detailed study of the field of view. The comparison stars' variability is determined in a self‐consistent way, and their weighted average is used as a reference level. The maximum error in differential photometry using objects and reference stars of different spectral types is estimated. The results from these calculations show that the photometric band chosen greatly determines the level of accuracy achieved. Finally, an important application of high‐precision differential photometry are planetary transits. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号