首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An inside–out model for the formation of haloes in a hierarchical clustering scenario is studied. The method combines the picture of the spherical infall model and a modification of the extended Press–Schechter theory. The mass accretion rate of a halo is defined to be the rate of its mass increase due to minor mergers. The accreted mass is deposited at the outer shells without changing the density profile of the halo inside its current virial radius. We applied the method to a flat Λ-cold dark matter universe. The resulting density profiles are compared with analytical models proposed in the literature, and a very good agreement is found. A trend is found of the inner density profile to become steeper for larger halo mass, which also results from recent N -body simulations. Additionally, present-day concentrations as well as their time evolution are derived and it is shown that they reproduce the results of large cosmological N -body simulations.  相似文献   

3.
A modified version of the extended Press–Schechter model for the growth of dark-matter haloes was introduced in two previous papers, with the aim of explaining the mass–density relation shown by haloes in high-resolution cosmological simulations. In this model, major mergers are well separated from accretion, thereby allowing a natural definition of halo formation and destruction. This makes it possible to derive analytic expressions for halo formation and destruction rates, the mass accretion rate and the probability distribution functions of halo formation times and progenitor masses. The stochastic merger histories of haloes can be readily derived and easily incorporated into semi-analytical models of galaxy formation, thus avoiding the usual problems encountered in the construction of Monte Carlo merger trees from the original extended Press–Schechter formalism. Here we show that the predictions of the modified Press–Schechter model are in good agreement with the results of N -body simulations for several scale-free cosmologies.  相似文献   

4.
We carry out N -body simulations of several non-Gaussian structure formation models, including Peebles' isocurvature cold dark matter model, cosmic string models, and a model with primordial voids. We compare the evolution of the cluster mass function in these simulations with that predicted by a modified version of the Press–Schechter formalism. We find that the Press–Schechter formula can accurately fit the cluster evolution over a wide range of redshifts for all of the models considered, with typical errors in the mass function of less than 25 per cent, considerably smaller than the amount by which predictions for different models may differ. This work demonstrates that the Press–Schechter formalism can be used to place strong model-independent constraints on non-Gaussianity in the Universe.  相似文献   

5.
We study the merging history of dark matter haloes in N -body simulations and semi-analytical 'merger trees' based on the extended Press–Schechter (EPS) formalism. The main focus of our study is the joint distribution of progenitor number and mass as a function of redshift and parent halo mass. We begin by investigating the mean quantities predicted directly by the Press–Schechter (PS) and EPS formalism, such as the halo mass and conditional mass functions, and compare these predictions with the results of the simulations. The higher moments of this distribution are not predicted by the EPS formalism alone and must be obtained from the merger trees. We find that the Press–Schechter model deviates from the simulations at the level of 30–50 per cent on certain mass scales, and that the sense of the discrepancy changes as a function of redshift. We show that this discrepancy is reflected in the higher moments of the distribution of progenitor mass and number. We investigate some related statistics such as the accretion rate and the mass ratio of the largest two progenitors. For galaxy sized haloes ( M ∼1012 M), we find that the merging history of haloes, as represented by these statistics, is well reproduced in the merger trees compared with the simulations. The agreement deteriorates for larger mass haloes. We conclude that merger trees based on the extended Press–Schechter formalism provide a reasonably reliable framework for semi-analytical models of galaxy formation.  相似文献   

6.
Accepted 1998 January 26. Received 1998 January 26; in original form 1997 August 13This paper presents a stochastic approach to the clustering evolution of dark matter haloes in the Universe. Haloes, identified by a Press–Schechter-type algorithm in Lagrangian space, are described in terms of 'counting fields', acting as non-linear operators on the underlying Gaussian density fluctuations. By ensemble-averaging these counting fields, the standard Press–Schechter mass function as well as analytic expressions for the halo correlation function and corresponding bias factors of linear theory are obtained, extending the recent results by Mo & White. The non-linear evolution of our halo population is then followed by solving the continuity equation, under the sole hypothesis that haloes move by the action of gravity. This leads to an exact and general formula for the bias field of dark matter haloes, defined as the local ratio between their number density contrast and the mass density fluctuation. Besides being a function of position and 'observation' redshift, this random field depends upon the mass and formation epoch of the objects and is both non-linear and non-local. The latter features are expected to leave a detectable imprint on the spatial clustering of galaxies, as described, for instance, by statistics like the bispectrum and the skewness. Our algorithm may have several interesting applications, among which is the possibility of generating mock halo catalogues from low-resolution N -body simulations.  相似文献   

7.
We use the extended Press–Schechter formalism to investigate the rate at which cold dark matter haloes accrete mass. We discuss the shortcomings of previous methods that have been used to compute the mass accretion histories of dark matter haloes, and present an improved method based on the N -branch merger tree algorithm of Somerville & Kolatt. We show that this method no longer suffers from inconsistencies in halo formation times, and compare its predictions with high-resolution N -body simulations. Although the overall agreement is reasonable, there are slight inconsistencies which are most easily interpreted as a reflection of ellipsoidal collapse (as opposed to spherical collapse assumed in the Press–Schechter formalism). We show that the average mass accretion histories follow a simple, universal profile, and we present a simple recipe for computing the two scale-parameters which is applicable to a wide range of halo masses and cosmologies. Together with the universal profiles for the density and angular momentum distributions of cold dark matter haloes, these universal mass accretion histories provide a simple but accurate framework for modelling the structure and formation of dark matter haloes. In particular, they can be used as a backbone for modelling various aspects of galaxy formation where one is not interested in the detailed effects of merging. As an example we use the universal mass accretion history to compute the rate at which dark matter haloes accrete mass, which we compare with the cosmic star formation history of the Universe.  相似文献   

8.
Modelling the build-up of haloes is important for linking the formation of galaxies with cosmological models. A simple model of halo growth is provided by Press–Schechter (PS) theory, where the initial field of density fluctuations is smoothed using spherically symmetric filters centred on a given position to obtain information about the likelihood of later collapse on varying scales. In this paper the predicted halo mass growth is compared for three filter shapes: Gaussian, top-hat and sharp k -space. Preliminary work is also presented analysing the build-up of haloes within numerical simulations using a friends-of-friends group finder. The best-fit to the simulation mass function was obtained using PS theory with a top-hat filter. By comparing both the backwards conditional mass function, which gives the distribution of halo progenitors, and the distribution of halo mergers in time, the build-up of haloes in the simulations is shown to be better fitted by PS theory with a sharp k -space filter. This strengthens previous work, which also found the build-up of haloes in simulations to be well matched to PS theory with a sharp k -space filter by providing a direct comparison of different filters and by extending the statistical tools used to analyse halo mass growth. The usefulness of this work is illustrated by showing that the cosmological evolution in the proportion of haloes that have undergone recent merger is predicted to be independent of mass and power spectrum and to only depend upon cosmology. Recent results from observations of field galaxies are shown to match the evolution expected, but are not sufficiently accurate to distinguish usefully between cosmological parameters.  相似文献   

9.
We explore a possible origin for the puzzling anti-correlation between the formation epoch of galactic dark-matter haloes and their environment density. This correlation has been revealed from cosmological N -body simulations and is in conflict with the extended Press–Schechter model of halo clustering. Using similar simulations, we first quantify the straightforward association of an early formation epoch with a reduced mass-growth rate at late times. We then find that a primary driver of suppressed growth, by accretion and mergers, is tidal effects dominated by a neighbouring massive halo. The tidal effects range from a slowdown of the assembly of haloes due to the shear along the large-scale filaments that feed the massive halo to actual mass loss in haloes that pass through the massive halo. Using the restricted three-body problem, we show that haloes are prone to tidal mass loss within 1.5 virial radii of a larger halo. Our results suggest that the dependence of the formation epoch on environment density is a secondary effect induced by the enhanced density of haloes in filaments near massive haloes where the tides are strong. Our measures of assembly rate are particularly correlated with the tidal field at high redshifts   z ∼ 1  .  相似文献   

10.
We present a semi-analytical model of star formation which explains simultaneously the observed ultraviolet (UV) luminosity function (LF) of high-redshift Lyman break galaxies (LBGs) and LFs of Lyman α emitters. We consider both models that use the Press–Schechter (PS) and Sheth–Tormen (ST) halo mass functions to calculate the abundances of dark matter haloes. The Lyman α LFs at   z ≲ 4  are well reproduced with only ≲10 per cent of the LBGs emitting Lyman α lines with rest equivalent width greater than the limiting equivalent width of the narrow band surveys. However, the observed LF at   z > 5  can be reproduced only when we assume that nearly all LBGs are Lyman α emitters. Thus, it appears that  4 < z < 5  marks the epoch when a clear change occurs in the physical properties of the high-redshift galaxies. As Lyman α escape depends on dust and gas kinematics of the interstellar medium (ISM), this could mean that on an average the ISM at   z > 5  could be less dusty, more clumpy and having more complex velocity field. All of these will enable easier escape of the Lyman α photons. At   z > 5  , the observed Lyman α LF are well reproduced with the evolution in the halo mass function along with very minor evolution in the physical properties of high-redshift galaxies. In particular, up to   z = 6.5  , we do not see the effect of evolving intergalactic medium opacity on the Lyman α escape from these galaxies.  相似文献   

11.
The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr black holes (BHs), the so-called fly-wheel (rotation driven) model. The fly-wheel engine of the BH–accretion disc system is applied to the statistics of QSOs/AGNs. In the model, the central BH is assumed to be formed at z ∼102 and obtains nearly maximum but finite rotation energy (∼extreme Kerr BH) at the formation stage. The inherently obtained rotation energy of the Kerr BH is released through a magnetohydrodynamic process. This model naturally leads to a finite lifetime of AGN activity.
Nitta, Takahashi & Tomimatsu clarified the individual evolution of the Kerr BH fly-wheel engine, which is parametrized by BH mass, initial Kerr parameter, magnetic field near the horizon and a dimensionless small parameter. We impose a statistical model for the initial mass function (IMF) of an ensemble of BHs using the Press–Schechter formalism. With the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density of QSOs/AGNs.
By comparing with observations , it is found that a somewhat flat IMF and weak dependence of the magnetic field on the BH mass are preferred. The result explains well the decrease of very bright QSOs and decrease of population after z ∼2.  相似文献   

12.
We use the non-linear spherical model in cold dark matter (CDM) cosmologies with dark energy to investigate the effects of dark energy on the growth of structure and the formation of virialized structures. We consider dark energy models with a constant equation-of-state parameter w . For  −1 < w < −1/3  , clusters form earlier and are more concentrated in quintessence than in ΛCDM models, but they form later and are less concentrated than in the corresponding open model with the same matter density and no dark energy. We point out some confusion in the literature around the expression of the collapse factor (ratio of the radius of the sphere at virialization to that at turnaround) derived from the virial theorem. We use the Sheth & Tormen extension of the Press–Schechter framework to calculate the evolution of the cluster abundance in different models and show the sensitivity of the cluster abundance to both the amplitude of the mass fluctuations, σ8, and the σ8– w normalization, selected to match either the cosmic microwave background observations or the abundance of X-ray clusters.  相似文献   

13.
The effects of late gas accretion episodes and subsequent merger-induced starbursts on the photochemical evolution of elliptical galaxies are studied and compared to the picture of galaxy formation occurring at high redshift with a unique and intense starburst modulated by a very short infall, as suggested by Pipino and Matteucci in Paper I. By means of the comparison with the colour–magnitude relations (CMRs) and the  [〈Mg/Fe〉 V ]–σ  relation observed in ellipticals, we conclude that either bursts involving a gas mass comparable to the mass already transformed into stars during the first episode of star formation (SF) and occurring at any redshift, or bursts occurring at low redshift (i.e. z ≤ 0.2) and with a large range of accreted mass, are ruled out. These models fail in matching the above relations even if the initial infalling hypothesis is relaxed, and the galaxies form either by means of more complicated SF histories or by means of the classical monolithic model. On the other hand, galaxies accreting a small amount of gas at high redshift (i.e. z ≥ 3) produce a spread in the model results, with respect to the best model of Paper I, which is consistent with the observational scatter of the CMRs, although there is only marginal agreement with the  [〈Mg/Fe〉 V ]–σ  relation. Therefore, only small perturbations to the standard scenario seem to be allowed. We stress that the strongest constraints to galaxy-formation mechanisms are represented by the chemical abundances, whereas the colours can be reproduced under several different hypotheses.  相似文献   

14.
The recently introduced models of reionization bubbles based on extended Press–Schechter theory (by Furlanetto, Hernquist & Zaldarriaga) are generalized to include mergers of ionization sources. Sources with a recent major merger are taken to have enhanced photon production due to star formation, and accretion on to a central black hole if a black hole is present. This produces a scatter in the number of ionized photons corresponding to a halo of a given mass and a change in photon production over time for any given halo mass. By extending previous methods, photon production histories, bubble distributions and ionization histories are computed for several different parameter and recombination assumptions. The resulting distributions interpolate between previously calculated limiting cases.  相似文献   

15.
We discuss prospects for cluster detection via the Sunyaev–Zel'dovich (SZ) effect in a blank field survey with the interferometer array, the Arcminute MicroKelvin Imager (AMI). Clusters of galaxies selected in the SZ effect probe cosmology and structure formation with little observational bias, because the effect measures integrated gas pressure directly, and does so independently of cluster redshift.
We use hydrodynamical simulations in combination with the Press–Schechter expression to simulate SZ cluster sky maps. These are used with simulations of the observation process to gauge the expected SZ cluster counts. Even with a very conservative choice of parameters we find that AMI will discover at least several tens of clusters every year with     the numbers depend on factors such as the mean matter density, the density fluctuation power spectrum and cluster gas evolution. The AMI survey itself can distinguish between these to some degree, and parameter degeneracies are largely eliminated given optical and X-ray follow-up of these clusters; this will also permit direct investigation of cluster physics and what drives the evolution.  相似文献   

16.
Understanding the formation and evolution of massive galaxies provides important keys to constrain the baryon assembly processes in the ΛCDM hierarchical scenario. We review the main results obtained so far with the K20 and other recent near-IR surveys on the redshift distribution, the evolution of the luminosity function and luminosity density, the nature of old and dusty EROs, the evolution of the galaxy stellar mass function and the nature of luminous starbursts at z∼2 which may be the progenitors of the present-day massive spheroidal galaxies.  相似文献   

17.
High-redshift galaxies and quasi-stellar objects (QSOs) are most likely to be strongly lensed by intervening haloes between the source and the observer. In addition, a large fraction of lensed sources is expected to be seen in the submillimetre region, as a result of the enhanced magnification bias on the steep intrinsic number counts. We extend in three directions Blain's earlier study of this effect.
First, we use a modification of the Press–Schechter mass function and detailed lens models to compute the magnification probability distribution. We compare the magnification cross-sections of populations of singular isothermal spheres and Navarro, Frenk & White (NFW) haloes and find that they are very similar, in contrast to the image-splitting statistics which were recently investigated in other studies. The distinction between the two types of density profile is therefore irrelevant for our purposes.
Secondly, we discuss quantitatively the maximum magnification, μ max, that can be achieved for extended sources (galaxies) with realistic luminosity profiles, taking into account the possible ellipticity of the lensing potential. We find that μ max plausibly falls into the range     for sources of     effective radius at redshifts within     .
Thirdly, we apply our model for the lensing magnification to a class of sources following the luminosity evolution typical for a unified scheme of QSO formation. As a result of the peculiar steepness of their intrinsic number counts, we find that the lensed source counts at a fiducial wave length of 850 μm can exceed the unlensed counts by several orders of magnitude at flux densities ≳100 mJy, even with a conservative choice of the maximum magnification.  相似文献   

18.
The stochasticity in the distribution of dark haloes in the cosmic density field is reflected in the distribution function   P V ( N h| δ m)  , which gives the probability of finding N h haloes in a volume V with mass density contrast δ m. We study the properties of this function using high-resolution N -body simulations, and find that   P V ( N h| δ m)  is significantly non-Poisson. The ratio between the variance and the mean goes from ∼1 (Poisson) at  1+ δ m≪1  to <1 (sub-Poisson) at  1+ δ m∼1  to >1 (super-Poisson) at  1+ δ m≫1  . The mean bias relation is found to be well described by halo bias models based on the Press–Schechter formalism. The sub-Poisson variance can be explained as a result of halo exclusion, while the super-Poisson variance at high δ m may be explained as a result of halo clustering. A simple phenomenological model is proposed to describe the behaviour of the variance as a function of δ m. Galaxy distribution in the cosmic density field predicted by semi-analytic models of galaxy formation shows similar stochastic behaviour. We discuss the implications of the stochasticity in halo bias to the modelling of higher order moments of dark haloes and of galaxies.  相似文献   

19.
Using semi-analytic models of galaxy formation, we investigate galaxy properties such as the Tully–Fisher relation, the B - and K -band LFs, cold gas contents, sizes, metallicities and colours, and compare our results with observations of local galaxies. We investigate several different recipes for star formation and supernova feedback, including choices that are similar to the treatment by Kauffmann, White & Guiderdoni and Cole et al., as well as some new recipes. We obtain good agreement with all of the key local observations mentioned above. In particular, in our best models, we simultaneously produce good agreement with both the observed B - and K -band LFs and the I -band Tully–Fisher relation. Improved cooling and supernova feedback modelling, inclusion of dust extinction and an improved Press–Schechter model all contribute to this success. We present results for several variants of the CDM family of cosmologies, and find that models with values of Ω0≃0.3–0.5 give the best agreement with observations.  相似文献   

20.
We produce and analyse u -band (  λ≈ 355  nm) luminosity functions (LFs) for the red and blue populations of galaxies using data from the Sloan Digital Sky Survey (SDSS) u -band Galaxy Survey ( u GS) and Deep Evolutionary Exploratory Probe 2 (DEEP2) survey. From a spectroscopic sample of 41 575 SDSS u GS galaxies and 24 561 DEEP2 galaxies, we produce colour magnitude diagrams and make use of the colour bimodality of galaxies to separate red and blue populations. LFs for eight redshift slices in the range  0.01 < z < 1.2  are determined using the  1/ V max  method and fitted with Schechter functions showing that there is significant evolution in   M *  , with a brightening of 1.4 mag for the combined population. The integration of the Schechter functions yields the evolution in the u -band luminosity density (LD) out to   z ∼ 1  . By parametrizing the evolution as  ρ∝ (1 + z )β  , we find that  β= 1.36 ± 0.2  for the combined populations and  β= 2.09 ± 0.2  for the blue population. By removing the contribution of the old stellar population to the u -band LD and correcting for dust attenuation, we estimate the evolution in the star formation rate (SFR) of the Universe to be  βSFR= 2.5 ± 0.3  . Discrepancies between our result and higher evolution rates measured using the infrared and far-UV can be reconciled by considering possibilities such as an underestimated dust correction at high redshifts or evolution in the stellar initial mass function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号