首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
前期土壤含水量对红壤坡面产流产沙特性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
利用田间人工模拟降雨试验,研究了前期土壤含水量对两种红壤坡面降雨入渗、产流和产沙特性的影响.结果表明:前期含水量越高,两种土壤都是产流越快,达到稳定径流和入渗的时间越短.低含水量区(干态和稍干),两种土壤的径流系数和入渗率都与降雨时间呈线性关系,并在60 min内达不到稳定.高含水量区(稍湿和湿态),两种土壤的径流系数、入渗率及产沙速率与降雨时间关系都符合Boltzmann(玻耳兹曼)方程;第四纪红粘土发育的红壤稍干态和红砂岩发育的红壤干态下的产沙速率在整个降雨过程中变化不明显,并都维持在较低水平;第四纪红粘土发育的红壤干态和红砂岩发育的红壤稍干态下的产沙速率随着模拟降雨的进行而大致以线性关系增大.土壤前期含水量越高,两种土壤坡地累tk积入渗量都越小,雨水转化为土壤水分的比率亦越小.  相似文献   

2.
Plastic film mulching is widely employed to improve crop yields. Mulching for the entire crop growth period is a widespread practice. However, a shorter plastic film mulching duration is suggested for obtaining larger grain yield recently. To quantify the effects of plastic film mulching durations on soil erosion and nutrient losses, a three-treatment experiment with three replicates was constructed in field. The designed treatments were control (M0, non-mulched treatment), mulching from sowing to the end of the peanut pod-setting stage (M1) and pod-filling stage (M2). Plastic film mulching significantly increased the mean runoff and sediment yield. With film mulching, the mean runoff and soil losses among M1 and M2 treatments had no significant difference, and significantly larger than that in M0 treatment. After mulching removing, there were no significant differences between the mean runoff and soil losses of M0 and M1 treatments. Compared with the M2 treatment, the M0 treatment had significantly reduced mean runoff and soil losses of all the events. Non-mulching increased the total nitrogen (TN) and total phosphorus (TP) losses. The M0 treatment had the highest TN (23.0 mg m?2) and TP (3.02 mg m?2) losses in the three treatments. The M2 treatment significantly reduced the TN and TP losses. In conclusion, mulching from sowing to the end of pod-setting stage was suggested as the appropriate choice for the largest yield and less soil erosion. But, some soil conservation measurements should be taken in furrow areas to effectively reduce soil erosion, under the condition of film mulching.  相似文献   

3.
Soil pipes are considered to drain off water from a hillslope and play an important role in the subsurface runoff generation process, thus reducing the slope failure susceptibility. However, soil pipes are also often detected on the collapsed slope suggesting that they might act to induce slope instability. To examine how the soil pipes act on pore-water pressure generation and on a slope failure processes, a numerical model was developed. The model was used to test the response of pore-water pressure in a hillslope with soil pipes of different cross-sectional areas, lengths, distances from the impermeable bed, roughness, and hillslope angles. The model was also tested to find the response of open soil pipe if blocked. The study reveals that pipes reduce pore-water pressure (measured closed to bed) around its upstream end and increase around its downstream end if compared with no pipe case. Pore-water pressure at downstream end is increased with increase in hillslope angle, pipe cross-sectional area, pipe length, or depth of soil pipe. Soil pipe, even if it is ended within the hillslope, increases the total discharge from hillslope. Location of rough soil also affects the discharge and pressure within the hillslope. If the less rough pipe is close to the source of water, discharge from hillslope matrix is greater regardless of its downstream pipe roughness. Blockage of small portion of open soil pipe increases the soil pressure around the region but not beyond the case if there is no soil pipe. However, complete collapse of soil pipe from a point to all along the downstream end of hillslope increases the pore-water pressure beyond the pressure if there were no soil pipes. Therefore, the position and type of soil pipe collapse might play an important role in shallow landslide initiation.  相似文献   

4.
黄土区坡地土壤水分运动与转化机理研究进展   总被引:56,自引:2,他引:56       下载免费PDF全文
土壤水分是作物生长、植被恢复以及生态环境建设的主要限制性因素.从降雨入渗及再分布、土壤水量转化以及土壤水分动态变化等几方面概述了黄土区坡地土壤水分运动与转化研究进展,认为应该把坡面土壤—植物—大气作为一个物理上的连续统一体,以大气水、地表水、植物水和土壤水相互转化过程和机制为基础,研究坡面土壤—植被—大气界面水分运动和转化规律,为植被恢复重建提供理论依据.  相似文献   

5.
雨滴溅蚀下压实黄土变形破坏规律研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对工程建设中存在的裸露黄土路堤边坡水土流失现象,为进一步研究降雨条件下雨滴击溅对路堤边坡的破坏作用,本文通过室内模拟单雨滴溅蚀试验,观测试件表面溅蚀坑深度随时间的变化情况,分析不同地表压实度和雨滴击溅速率两种因素作用下压实黄土的溅蚀破坏规律。在此基础上,研究了压实度、含水率对黄土耐溅蚀性的影响,分析了降雨强度与土体溅蚀破坏的关系。结果表明:当溅蚀坑内存在薄层积水时,短历时降雨易使土体发生表层破坏;反之,容易产生二次溅蚀,二次溅蚀易造成黄土路堤边坡的深层破坏。  相似文献   

6.
7.
A new method for obtaining the C factor (i.e., vegetation cover and management factor) of the RUSLE model is proposed. The method focuses on the derivation of the C factor based on the vegetation density to obtain a more reliable erosion prediction. Soil erosion that occurs on the hillslope along the highway is one of the major problems in Malaysia, which is exposed to a relatively high amount of annual rainfall due to the two different monsoon seasons. As vegetation cover is one of the important factors in the RUSLE model, a new method that accounts for a vegetation density is proposed in this study. A hillslope near the Guthrie Corridor Expressway (GCE), Malaysia, is chosen as an experimental site whereby eight square plots with the size of \(8\times 8\) and \(5\times 5\) m are set up. A vegetation density available on these plots is measured by analyzing the taken image followed by linking the C factor with the measured vegetation density using several established formulas. Finally, erosion prediction is computed based on the RUSLE model in the Geographical Information System (GIS) platform. The C factor obtained by the proposed method is compared with that of the soil erosion guideline Malaysia, thereby predicted erosion is determined by both the C values. Result shows that the C value from the proposed method varies from 0.0162 to 0.125, which is lower compared to the C value from the soil erosion guideline, i.e., 0.8. Meanwhile predicted erosion computed from the proposed C value is between 0.410 and \(3.925\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\) compared to 9.367 to \(34.496\, \hbox {t ha}^{-1}\,\hbox {yr}^{-1 }\) range based on the C value of 0.8. It can be concluded that the proposed method of obtaining a reasonable C value is acceptable as the computed predicted erosion is found to be classified as a very low zone, i.e. less than \(10\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\) whereas the predicted erosion based on the guideline has classified the study area as a low zone of erosion, i.e., between 10 and \(50\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\).  相似文献   

8.
Natural Hazards - Analysis of long-term land use and land cover (LULC) changes requires up-to-date remotely sensed data to assess their effects on erosion. This is a particularly important...  相似文献   

9.
根据水库自成封闭系统,自分水岭至水库内,被洪水或其它地质营力所搬运的泥砂沉积封存于水库内的基本原理,提出定量研究水土流失的基本方法.并以江西田坂街幅1∶5万区域地质调查为例,按照这一思路和方法进行了定量研究.结果表明,不同岩类区与不同时期的泥沙流失量是不同的,与全新统比较,前震旦纪浅变质岩区水土保持较好,侵蚀速率下降;而白垩纪红层区则达中度侵蚀,并呈恶化趋势.  相似文献   

10.
A number of flat hollow cylinders equal in weight to the replaced soil have been installed at different depths below the surface of a 47% slope. The slope was developed over Maestrichtian chalk overlain by a poorly sorted but rather homogeneous Upper Pleistocene cover. The displacements of the cylinders have been recorded for three years.

The design of the geodetical method of measurement and the results are discussed. The estimated error (twice the standard deviation) of the measurements regarding the horizontal component of the displacements appears to be less than 0.4 mm; the error regarding the vertical component less than 0.3 mm.

Significant displacements have been recorded so far only from the upper 20 cm. The measured movements are spasmodic and parallel to the slope. The mean velocity of the top soil amounts to 1 mm/year. The collected data are insufficient to investigate the applicability of viscous creep models.  相似文献   


11.
Farmlands have gradually been replaced by apple orchards in Shaanxi province, China, and there will be a risk of severe soil-water-storage deficit with the increasing age of the apple trees. To provide a theoretical basis for the sustainable development of agriculture and forestry in the Loess Plateau, soil water content in a 19-year-old apple orchard, a 9-year-old apple orchard, a cornfield and a wheat field in the Changwu Tableland was investigated at different depths from January to October 2014. The results showed that: (1) the soil moisture content is different across the soil profile—for the four plots, the soil moisture of the cornfield is the highest, followed by the 9-year-old apple orchard and the wheat field, and the 19-year-old apple orchard has the lowest soil moisture. (2) There are varying degrees of soil desiccation in the four plots: the most serious degree of desiccation is in the 19-year-old apple orchard, followed by the wheat field and the cornfield, with the least severe desiccation occurring in the 9-year-old apple orchard. Farmland should replace apple orchards for an indefinite period while there is an extremely desiccated soil layer in the apple orchard so as to achieve the purpose of sustainable development. It will be necessary to reduce tree densities, and to carry out other research, if development of the economy and ecology of Changwu is to be sustainable.  相似文献   

12.
The diversity in landscapes at the Earth’s surface is the result, amongst other things, of the balance (or imbalance) between soil production and erosion. While erosion rates are well constrained, it is only recently that we have been able to quantify rates of soil production. Uranium-series isotopes have been useful to provide such estimates independently of erosion rates. In this study, new U-series isotope are presented data from weathering profiles developed over andesitic parent rock in Puerto Rico, and granitic bedrock in southeastern Australia. The site in Australia is located on a highland plateau, neighbouring a retreating escarpment where soil production rates between 10 and 50 mm/kyr have been determined. The results show that production rates are invariant in these two regions of Australia with values between 15 and 25 mm/kyr for the new site. Andesitic soils show much faster rates, about 200 mm/kyr. Overall, soil production rates determined with U-series isotopes range between 10 and 200 mm/kyr. This is comparable to erosion rates in soil-mantled landscapes, but faster than erosion in cratonic areas and slower than in alpine regions and cultivated areas. This suggests that soil-mantled landscapes maintain soil because they can: there is a balance between production and erosion. Similarly, thick weathering profiles develop in cratonic areas because, despite slow erosion rates, soil production is still significant. Bare landscapes in Alpine regions are probably the result of the inability of soil production to catch up with fast erosion rates, although this needs testing by U-series isotope studies of these regions. Finally, the range of production rates is up to several orders of magnitude lower than erosion rates in cultivated areas, demonstrating quantitatively the fast depletion of soil resources with common agricultural practices.  相似文献   

13.
为揭示延安丘陵区黄土雨滴溅蚀特征及其演变过程,选取晚更新世原状黄土为研究对象,利用自制的雨径、雨强可控的单雨滴模拟试验装置,对边坡浅表层采集的原状黄土进行雨滴击溅侵蚀试验,研究降雨强度和降雨历时对原状黄土侵蚀特征的影响规律。结果表明: ①雨滴连续击打作用下,原状黄土表面逐渐形成一近似圆形的溅蚀坑,溅蚀坑由浅变深、由小变大,侵蚀深度随降雨历时的发展过程可描述为快速增长阶段(0~10 min)、缓慢增长阶段(10~40 min)和稳定发展阶段(40~60 min)。②侵蚀深度、侵蚀破坏直径及侵蚀扩散直径随降雨历时发展过程符合幂函数型增长,0~10 min为侵蚀变形主要增长阶段,降雨强度越大,土壤侵蚀作用越显著,0~10 min阶段的侵蚀深度占总侵蚀深度比例可达81%以上; 降雨历时约10 min后,溅蚀面上横向侵蚀范围基本趋于稳定状态,侵蚀深度、侵蚀破坏直径及侵蚀扩散直径均随降雨强度呈正相关,且侵蚀扩散直径D约为侵蚀破坏直径D0的2.71~3.55倍。③强降雨是诱发黄土边坡发生侵蚀灾害和水土流失的重要影响因素,建议采用坡面植绿、加筋和防排水等防护措施,增强坡面抗侵蚀能力,降低黄土边坡浅层水蚀灾害发生。研究成果可为黄土地区降雨侵蚀灾害防治提供参考。  相似文献   

14.
Dividing a catchment to subcatchment or hillslope scales allows for better scrutiny of the changes in spatial distribution of rainfall, soil attributes and plant cover across the catchment. An instantaneous unit hydrograph model is suggested for simulating runoff hydrographs for complex hillslopes. This model is able to estimate surface and subsurface flows of the catchment based on the Dunne-Black mechanism. For this purpose, a saturation model is used to separate the saturated and unsaturated zones in complex hillslopes. The profile curvatures (concave, straight and convex) and plan shapes (convergent, parallel and divergent) of complex hillslopes are considered, in order to compute the travel time of surface and subsurface flows. The model was used for prediction of the direct runoff hydrograph and subsurface flow hydrograph of Walnut Gulch No. 125 catchment in Arizona (USA). Based on results, the geometry of hillslopes can change the peak of the direct runoff hydrograph up to two-fold, either higher or lower. The divergent hillslopes show higher peaks in comparison with the parallel and convergent hillslopes. The highest and lowest peak flows correspond to divergent-concave and convergent-straight hillslopes, respectively.  相似文献   

15.
Physical processes are at the root of determining hydrologic response at all scales. Here, the physical mechanisms linking (1) subsurface heterogeneities to soil moisture and (2) resulting land-surface energy feedbacks to the atmosphere, are examined at the hillslope scale using a fully coupled surface-subsurface-land-surface model, ParFlow. A hillslope with a heterogeneous subsurface and uniform topography was modeled numerically using summer atmospheric conditions and a single precipitation event under controlled boundary conditions in order to isolate the contribution of hydraulic conductivity to land-surface hydrological processes and energy interactions. Patterns of subsurface hydraulic conductivity are shown to govern soil-moisture distribution at the hillslope scale following precipitation. This variability in soil moisture is closely linked to the variability in land-surface energy feedbacks. The role that vegetation plays in subsurface soil moisture and land energy communications is also examined. Results show that hillslope soil moisture variation is first established by patterns in vertical hydraulic conductivity, while later on in the dry-down period, vegetation exerts greater control on the land-surface energy fluxes and controls the rate of hillslope dry down. Furthermore, as compared to bare-soil simulations, grass-cover simulations show an increase in near-surface soil moisture despite water up-take along the rooting depth.  相似文献   

16.
Measurements of hillslope debris flow impact pressure on obstacles   总被引:4,自引:3,他引:4  
We present measurements of hillslope debris flow impact pressures on small obstacles. Two impact sensors have been installed in a real-scale experimental site where 50?m3 of water-saturated soil material are released from rest. Impact velocities vary between 2 and 13?m/s; flow heights between 0.3 and 1.0?m. The maximum impact pressures measured over 15 events represent between 2 and 50 times the equivalent static pressures. The measurements reveal that quadratic velocity-dependent formulas can be used to estimate impact pressures. Impact coefficients C are constant from front to tail and range between 0.4?<?C?<?0.8 according to the individual events. The pressure fluctuations to depend on the sensor size and are between 20% and 60% of the mean pressure values. Our results suggest that hazard guidelines for hillslope debris flows should be based on quadratic velocity-dependent formulas.  相似文献   

17.
The native riparian herbs such as Leonotis nepetaefolia (L.) R. Br., Cassia tora L., Ageratum conyzoides L., Parthenium hysterophorus L. and Sida acuta burm f., dominant on the bank of River Damodar in Eastern Jharia Area, Dhanbad (India), were selected to assess experimentally their quantitative role in conserving the soil and reducing water runoff and nutrient (N and P) losses. A total of 42.5 mm simulated rainfall were applied at 30 cm h−1 rain intensity on both vegetated and bare plots. The collected runoff water and eroded soil from each plot were determined in terms of soil, water and nutrient conservation value (CV). Among the vegetated plots, soil CV ranged from 30 to 85% and water CV from 20 to 48%. Nutrient (N and P) CV varied from 22 to 65% for total-N, 48 to 80% for ammonia-N and 50 to 86% for nitrate-N. CV for total-P varied from 40 to 62%, inorganic-P from 42 to 60% and organic-P from 20 to 58%. In a stepwise multiple regression equation comprising four independent variables (canopy cover, litter mass, soil moisture and plant biomass), canopy cover explained 70–88% (P < 0.01) of variability in conserving soil, water and nutrient. The losses through runoff water and eroded soil from vegetated plots were found to be minimized to a great extent as compared to bare plots. The role of these species in maintaining the texture and fertility status of riparian soil is discussed.  相似文献   

18.
Soil water erosion (SWE) is an important global hazard that affects food availability through soil degradation, a reduction in crop yield, and agricultural land abandonment. A map of soil erosion susceptibility is a first and vital step in land management and soil conservation. Several machine learning (ML) algorithms optimized using the Grey Wolf Optimizer (GWO) metaheuristic algorithm can be used to accurately map SWE susceptibility. These optimized algorithms include Convolutional Neural Networks (CNN and CNN-GWO), Support Vector Machine (SVM and SVM-GWO), and Group Method of Data Handling (GMDH and GMDH-GWO). Results obtained using these algorithms can be compared with the well-known Revised Universal Soil Loss Equation (RUSLE) empirical model and Extreme Gradient Boosting (XGBoost) ML tree-based models. We apply these methods together with the frequency ratio (FR) model and the Information Gain Ratio (IGR) to determine the relationship between historical SWE data and controlling geo-environmental factors at 116 sites in the Noor-Rood watershed in northern Iran. Fourteen SWE geo-environmental factors are classified in topographical, hydro-climatic, land cover, and geological groups. We next divided the SWE sites into two datasets, one for model training (70% of the samples = 81 locations) and the other for model validation (30% of the samples = 35 locations). Finally the model-generated maps were evaluated using the Area under the Receiver Operating Characteristic (AU-ROC) curve. Our results show that elevation and rainfall erosivity have the greatest influence on SWE, while soil texture and hydrology are less important. The CNN-GWO model (AU-ROC = 0.85) outperformed other models, specifically, and in order, SVR-GWO = GMDH-GWO (AUC = 0.82), CNN = GMDH (AUC = 0.81), SVR = XGBoost (AUC = 0.80), and RULSE. Based on the RUSLE model, soil loss in the Noor-Rood watershed ranges from 0 to 2644 t ha–1yr?1.  相似文献   

19.
A large part of the Northem Hemisphere is covered by podzols and similar soil types, which have a surface layer characterized by high organic matter content. This layer is extremely important because it is the main source of plant nutrients. The elemental composition of the surface soil however is often strongly different from that of the underlying mineral soil, which may be due to a combination of natural processes and anthropogenic influence. Research in Norway over the last 30 years has contr/buted to the understanding of the relative importance of different factors in modifying the chemistry of the surface soil. The country is relatively pristine, but is substantially influenced in the south by atmospheric supply of pollutants from other parts of Europe. Vegetation is relatively uniform over large parts of the country, but climatic variations related to oceanic influence are considerable.  相似文献   

20.
黄土高原沟壑区坡地土壤水分状态空间模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
为掌握黄土高原沟壑区坡地土壤水分的空间分布特征及其影响因素,采用状态空间模型和经典线性回归方法对该区不同土层深度土壤含水率的分布进行模拟.结果表明,不同土层深度的土壤含水率呈中等程度变异,并与海拔高度、黏粒、粉粒、砂粒含量和分形维数具有显著的空间自相关和交互相关关系,可用于状态空间模拟分析.不同因素组合下的状态空间模拟效果均要优于线性回归方程,其中采用海拔高度、砂粒含量和分形维数的三因素状态空间方程模拟精度最高(R2=0.992).状态空间模拟方法可用于黄土高原坡面尺度不同土层深度土壤含水率的预测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号