首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
局部地形条件对地震动放大有显著影响,解析法和数值法均可研究该问题,而解析法可以分析问题的物理本质和检验数值法的精度.将局部地形分为无盖层凹陷地形、有盖层凹陷地形(沉积谷地)、凸起地形和复合地形;分别综述了国内外关于各种局部地形对地震动影响的解析解研究成果.从以下4个方面分析和讨论当前研究成果:①研究方法;②计算介质模型;③各局部地形研究水平的不均衡;④研究存在不足之处.提出了未来发展方向:未来该领域应加强研究局部地形对Rayleigh波地震动响应规律,开展局部地形对多种波耦合入射下的地震动响应规律的研究,运用非线性波动理论研究局部地形对地震动的影响和开展三维非线性地震动数值模拟研究.  相似文献   

2.
Coherency functions are used to describe the spatial variation of seismic ground motions at multiple supports of long span structures. Many coherency function models have been proposed based on theoretical derivation or measured spatial ground motion time histories at dense seismographic arrays. Most of them are suitable for modelling spatial ground motions on flat‐lying alluvial sites. It has been found that these coherency functions are not appropriate for modelling spatial variations of ground motions at sites with irregular topography (Struct. Saf. 1991; 10 (1):1–13). This paper investigates the influence of layered irregular sites and random soil properties on coherency functions of spatial ground motions on ground surface. Ground motion time histories at different locations on ground surface of the irregular site are generated based on the combined spectral representation method and one‐dimensional wave propagation theory. Random soil properties, including shear modulus, density and damping ratio of each layer, are assumed to follow normal distributions, and are modelled by the independent one‐dimensional random fields in the vertical direction. Monte‐Carlo simulations are employed to model the effect of random variations of soil properties on the simulated surface ground motion time histories. The coherency function is estimated from the simulated ground motion time histories. Numerical examples are presented to illustrate the proposed method. Numerical results show that coherency function directly relates to the spectral ratio of two local sites, and the influence of randomly varying soil properties at a canyon site on coherency functions of spatial surface ground motions cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
局部山体地形对强地面运动的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王铭锋  郑傲  章文波 《地球物理学报》2017,60(12):4655-4670

基于曲线网格有限差分方法研究了地震波在不同坡度的山体地形及水平地表模型中的传播,得到了各模型速度波形及地表峰值速度特征,从地形自身特征及震源特征两方面出发讨论了地形效应:一是相同的震源模型下地形坡度、形状对地震动的影响;二是同一山体模型下地震动对不同震源机制的点源以及相对复杂的有限断层的响应.主要结论如下:(1)一般情况下,地形放大效应在坡度较大的地方比较明显,并随着坡度的增加而增大,但在某些特定情况下,放大效应与坡度并不满足正相关,且这种情况的发生与震源性质无关,可能仅受地形形态自身的影响;(2)对于不同的震源机制,地面运动各分量受地形影响程度不同,总体上水平分量受地形影响程度更大;(3)震源机制和震源激发的波的频率会影响放大效应最大值出现的位置,放大效应最大值不一定出现在山顶处,有可能会出现在起伏地形的震源对侧,出现位置可能与波的相互作用有关;(4)有限断层模型下,地面运动特征相对更为复杂,地形效应不仅受断层模型几何特征的影响,同时断层破裂过程对其也有着重要的影响.

  相似文献   

4.
The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morphological factors affecting the seismic hazard, we simulated the strong ground mo-tion caused by the earthquake, incorporating three-dimensional (3D) earth structure, finite-fault rupture, and realistic surface topography. The simulated ground motions reveal that the fault rupture and basin structure control the overall pattern of the peak ground shaking. Large peak ground velocity (PGV) is distributed in two narrow areas: one with the largest PGV values is above the hanging wall of the fault and attributed to the locations of fault asperities and rupture directivity; the other is along the north-western margin of the Sichuan Basin and caused by both the directivity of fault rupture and the ampli-fication in the thick sediment basin. Rough topography above the rupture fault causes wave scattering, resulting in significantly larger peak ground motion on the apex of topographic relief than in the valley. Topography and scattering also reduce the wave energy in the forward direction of fault rupture but increase the PGV in other parts of the basin. These results suggest the need for a localized hazard as-sessment in places of rough topography that takes the topographic effects into account. Finally, had the earthquake started at the northeast end of the fault zone and ruptured to the southwest, Chengdu would have suffered a much stronger shaking than it experienced on 12 May, 2008.  相似文献   

5.
Assessment of the vertical distribution on seismic ground motion   总被引:1,自引:0,他引:1  
It is very important for the facilities such as nuclear power plants to infer seismic force loading on the earthquake stability assessment of the building foundation and the surrounding slope. The purpose of this paper was to propose a method to evaluate underground seismic coefficients, taking into account dynamic response along the depth in horizontally multi-layered ground. The dynamic property of the seismic coefficient was analyzed on the basis of earthquake records observed at hard and soft rock sites mostly found in Tertiary deposits and sedimentary ground sites of the Pleistocene and Holocene epoch. The evaluation methods of a vertical distribution on underground seismic coefficients were proposed for a few calculation methods on the classified layered ground. Extended evaluation for underground seismic coefficients was confirmed with respect to some multi-layered ground during strong motion.  相似文献   

6.
This is the 6th contribution in the series of Historical Notes on seminal concepts in earthquake engineering and structural dynamics. It documents the origins and early developments (from the 1880s through 1992) of the effects of site geology on seismic ground motion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The free-field accelerograms along Feitsui Canyon are analyzed and modeled by a numerical scheme to study the effect of canyon topography. Since six strong-motion accelerometers (SC1–SC6) were deployed along the Feitsui Canyon in 1991; there are 14 earthquakes (4.9≤ML≤6.6) recorded by these stations until June 1996, but only five triggered all six stations. The maximum PGA value is 68.6 cm s−2 recorded at station SC1. According to the present data, the effect of the dam on the ground motions at canyon stations can be negligible. The amplitude of ground motion on the slopes of the canyon is bigger than that at its trough. The integral equation method is applied to a two dimensional model of Feitsui Canyon to study the effects of the canyon topography. We choose the ground motion of SC3 or SC4 station at the trough of the canyon as the input motion for the model, which is then used to predict the ground motion at the other five stations. Apart from the earthquake close to the damsite, the simple model can reproduce the observed accelerations at all frequencies below 4 Hz. Overall, the numerical method can well predict the ground motion along the canyon, although the high-frequency simulation is underestimated.  相似文献   

8.
考虑地震动的随机性和频率与强度非平稳性,通过理论分析,提出了一般随机地震动模型,并给出了确定模型参数的原则和方法。该模型以地震动强度、地震动能量以及地震动持时等宏观指标作为控制随机地震动模型参数的指标,而对其内在的频谱组成等指标只要求满足一般地震动的特征。该模型可以用于描述平稳随机过程、强度非平稳随机过程以及强度和频率完全非平稳随机过程。通过与常用功率谱模型的比较,验证了该模型的合理性。  相似文献   

9.
利用天然地震记录数据提取其非平稳相位数据的方法、论证人造地震动方法的可行性和合理性,并以呼和浩特市基岩场地非平稳人造地震动预测拟合应用为例,进行人造地震动反应谱拟合.本研究方法明显加强地震监测数字化记录与结构地震动输入预测模拟的密切联系,使地震动预测因充分利用近场地震观测资料而得到质的飞跃.  相似文献   

10.
An efficient computational framework is presented for seismic risk assessment within a modeling approach that utilizes stochastic ground motion models to describe the seismic hazard. The framework is based on the use of a kriging surrogate model (metamodel) to provide an approximate relationship between the structural response and the structural and ground motion parameters that are considered as uncertain. The stochastic character of the excitation is addressed by assuming that under the influence of the white noise (used within the ground motion model) the response follows a lognormal distribution. Once the surrogate model is established, a task that involves the formulation of an initial database to inform the metamodel development, it is then directly used for all response evaluations required to estimate seismic risk. The model prediction error stemming from the metamodel is directly incorporated within the seismic risk quantification and assessment, whereas an adaptive approach is developed to refine the database that informs the metamodel development. The ability to efficiently obtain derivative information through the kriging metamodel and its utility for various tasks within the probabilistic seismic risk assessment is also discussed. As an illustrative example, the assessment of seismic risk for a benchmark four‐story concrete office building is presented. The potential that ground motions include near‐fault characteristics is explicitly addressed within the context of this example. The implementation of the framework for the same structure equipped with fluid viscous dampers is also demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present development status. Post-earthquake investigation has found that the existence of topography caused more serious earthquake damage. The actual seismographs also recorded the topographic amplification effect of 6 to 7 times and even more than 10 times. Numerical simulation is an important technique to study topographic effect, which complements the lack of observed records. However researches on 3-D topographic effect are not enough and need to be studied deeper. To find the main influence factors and the quantitative relationship between topography and ground motion are required very urgently. Obviously the achievements not only can be applied in the earthquake resistant design, but also can provide the quantitative pre-earthquake disaster prediction and quantitative post-earthquake disaster evaluation.  相似文献   

12.
13.
Study on the severest real ground motion for seismic design and analysis   总被引:1,自引:0,他引:1  
How to select the adequate real strong earthquake ground motion for seismic analysis and design of trucures is an essential problem in earthquake engineering research and practice.In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions.By using this method the severest earthquake ground motions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground moton records collected over the world.The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential.It is noted that for different structures with diffferent predominant natural periods and at different sites where structures are located the severest design ground motions are usually different.Finally.two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.  相似文献   

14.
Numerical evaluation of slope topography effects on seismic ground motion   总被引:7,自引:0,他引:7  
This paper presents results of numerical analyses for the seismic response of step-like ground slopes in uniform visco-elastic soil, under vertically propagating SV seismic waves. The aim of the analyses is to explore the effects of slope geometry, predominant excitation frequency and duration, as well as of the dynamic soil properties on seismic ground motion in a parametric manner, and provide qualitative as well as quantitative insight to the phenomenon. Among the main conclusions of this study is that this kind of topography may lead to intense amplification or de-amplification variability at neighboring (within a few tens of meters) points behind the crest of the slope, especially for high frequency excitations. Nevertheless, a general trend of amplification near the crest and de-amplification near the toe of the slope seems to hold for the horizontal motion. As a result of these two findings, it becomes evident that reliable field evidence of slope topography aggravation is extremely difficult to establish. Furthermore, this study highlights the generation of a parasitic vertical component of motion in the vicinity of the slope, due to wave reflections at the slope surface, that under certain preconditions may become as large as the horizontal. Criteria are established for deciding on the importance of topography effects, while approximate relations are provided for the preliminary evaluation of the topographic aggravation of seismic ground motion and the width of the affected zone behind the crest.  相似文献   

15.
The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morphological factors affecting the seismic hazard, we simulated the strong ground motion caused by the earthquake, incorporating three-dimensional (3D) earth structure, finite-fault rupture, and realistic surface topography. The simulated ground motions reveal that the fault rupture and basin structure control the overall pattern of the peak ground shaking. Large peak ground velocity (PGV) is distributed in two narrow areas: one with the largest PGV values is above the hanging wall of the fault and attributed to the locations of fault asperities and rupture directivity; the other is along the northwestern margin of the Sichuan Basin and caused by both the directivity of fault rupture and the amplification in the thick sediment basin. Rough topography above the rupture fault causes wave scattering, resulting in significantly larger peak ground motion on the apex of topographic relief than in the valley. Topography and scattering also reduce the wave energy in the forward direction of fault rupture but increase the PGV in other parts of the basin. These results suggest the need for a localized hazard assessment in places of rough topography that takes the topographic effects into account. Finally, had the earthquake started at the northeast end of the fault zone and ruptured to the southwest, Chengdu would have suffered a much stronger shaking than it experienced on 12 May, 2008. Supported by the U.S. National Science Foundation (Grant Nos. EAR 0738779 and OCE 0727919), the National Basic Research Program of China (Grant No. 2004CB418404), and partially by the National Nature Science Foundation of China (Grant No. 40521002)  相似文献   

16.
地震作用下立式储液罐罐壁“象足”变形仿真分析   总被引:1,自引:0,他引:1  
基于ANSYS软件建立了考虑液体晃动和罐底提离立式储液罐有限元模型,分别进行了水平地震和竖向地震作用下罐壁“象足”变形分析。分析表明:立式储液罐罐壁“象足”变形主要是由罐壁纵向压应力超过临界应力而产生的局部屈曲破坏,并非强度破坏。因罐底提离导致的罐底与基础反复撞击加大了作用在罐壁上的应力,使罐壁底部“象足”变形不断发展,最终导致罐壁撕裂。在完全相同地震加速度作用下,水平地震作用比竖向地震作用罐壁更早更容易进入屈曲状态,产生“象足”变形。  相似文献   

17.
地震作用下立式储液罐罐壁"象足"变形仿真分析   总被引:2,自引:0,他引:2  
基于ANSYS软件建立了考虑液体晃动和罐底提离立式储液罐有限元模型,分别进行了水平地震和竖向地震作用下罐壁"象足"变形分析.分析表明:立式储液罐罐壁"象足"变形主要是由罐壁纵向压应力超过临界应力而产生的局部屈曲破坏,并非强度破坏.因罐底提离导致的罐底与基础反复撞击加大了作用在罐壁上的应力,使罐壁底部"象足"变形不断发展,最终导致罐壁撕裂.在完全相同地震加速度作用下,水平地震作用比竖向地震作用罐壁更早更容易进入屈曲状态,产生"象足"变形.  相似文献   

18.
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.  相似文献   

19.
ThelimitpropertiesofspatialcoherenceofseismicgroundmotionJUN-JIEWANG(王君杰)WEICHEN(陈玮)DepartmentofBridgeEngineering,TongjiUniv...  相似文献   

20.
Amplitude scaling is commonly used to select ground motions matching a target response spectrum. In this paper, the effect of scaling limits on ground motion selection, based on the conditional spectrum framework, is investigated. Target spectra are computed for four probabilistic seismic hazard cases in Western United States, and 16 ground motion suites are selected using different scaling limits (ie, 2, 5, 10, and 15). Comparison of spectral acceleration distributions of the selected ground motion suites demonstrates that the use of a scaling limit of 2 yields a relatively poor representation of the target spectra, because of the small limit leading to an insufficient number of available ground motions. It is also shown that increasing scaling limit results in selected ground motions with generally increased distributions of Arias intensity and significant duration Ds5-75, implying that scaling limit consideration can significantly influence the cumulative and duration characteristics of selected ground motions. The ground motion suites selected are then used as input for slope displacement and structural dynamic analyses. Comparative results demonstrate that the consideration of scaling limits in ground motion selection has a notable influence on the distribution of the engineering demand parameters calculated (ie, slope displacement and interstory drift ratio). Finally, based on extensive analyses, a scaling limit range of 3 to 5 is recommended for general use when selecting ground motion records from the NGA-West2 database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号