首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Xiong'er volcanic belt, covering an area of more than 60,000 km2 along the southern margin of the North China Craton, has long been considered an intra-continental rift zone and recently interpreted as part of a large igneous province formed by a mantle plume that led to the breakup of the Paleo-Mesoproterozoic supercontinent Columbia. However, such interpretations cannot be accommodated by lithology, mineralogy, geochemistry and geochronology of the volcanic rocks in the belt. Lithologically, the Xiong'er volcanic belt is dominated by basaltic andesite and andesite, with minor dacite and rhyolite, different from rock associations related to continental rifts or mantle plumes, which are generally bimodal and dominated by mafic components. However, they are remarkably similar to those rock associations in modern continental margin arcs. In some of the basaltic andesites and andesites, amphibole is a common phenocryst phase, suggesting the involvement of H2O-rich fluids in the petrogenesis of the Xiong'er volcanic rocks. Geochemically, the Xiong'er volcanic rocks fall in the calc-alkaline series, and in most tectono-magmatic discrimination diagrams, the majority of the Xiong'er volcanic rocks show affinities to magmatic arcs. In the primitive mantle normalized trace-element diagrams, the Xiong'er volcanic rocks show enrichments in the LILE and LREE, and negative Nb–Ta–Ti anomalies, similar to arc-related volcanic rocks produced by the hydrous melting of metasomatized mantle wedge. Nd-isotope compositions of the Xiong'er volcanic rocks suggest that 5–15% older crust has been transferred into the upper lithospheric mantle by subduction-related recycling during Archean to Paleoproterozoic time. Available SHRIMP and LA-ICP-MS U–Pb zircon age data indicate that the Xiong'er volcanic rocks erupted intermittently over a protracted interval from 1.78 Ga, through 1.76–1.75 Ga and 1.65 Ga, to 1.45 Ga, though the major phase of the volcanism occurred at 1.78–1.75 Ga. Such multiple and intermittent volcanism is inconsistent with a mantle plume-driven rifting event, but is not uncommon in ancient and existing continental margin arcs. Taken together, the Xiong'er volcanic belt was most likely a Paleo-Mesoproterozoic continental magmatic arc that formed at the southern margin of the North China Craton. Similar Paleo-Mesoproterozoic continental magmatic arcs were also present at the southern and southeastern margins of Laurentia, the southern margin of Baltica, the northwestern margin of Amonzonia, and the southern and eastern margins of the North Australia Craton, which are considered to represent subduction-related episodic outbuilding on the continental margins of the Paleo-Mesoproterozoic supercontinent Columbia. Therefore, in any configuration of the supercontinent Columbia, the southern margin of the North China Craton could not have been connected to any other continental block as proposed in a recent configuration, but must have faced an open ocean whose lithosphere was subducted beneath the southern margin of the North China Craton.  相似文献   

2.
河南省卢氏县八宝山岩体位于华北克拉通南缘东秦岭西段,岩体呈筒状,可能为古火山机构岩颈相的超浅成侵入体,成矿组合上为独特的以铁为主的多金属矿化。八宝山岩体边缘相为钾长花岗斑岩、中心相为黑云母二长花岗斑岩。二者的LA-ICP-MS锆石U-Pb年龄非常一致,分别为146.6±1.6Ma和145.9±1.9Ma,说明他们可能是同期岩浆侵入作用分异的产物。钾长花岗斑岩和黑云母二长花岗斑岩锆石Hf同位素组成特征也非常相似,εHf(t)值分别为-27.55~-20.71和-27.30~-21.90,tDM2值分别为1.80~2.93Ga和2.03~2.92Ga,表明该岩体的源区物质以壳源物质为主。综合分析表明,八宝山岩体可能是扬子俯冲陆壳部分熔融的作物,并可能混入少量的太华群和熊耳群的物质,其形成的地球动力学背景可能为俯冲碰撞后的伸展环境。  相似文献   

3.
通化地区古元古代晚期花岗质岩浆作用与地壳演化   总被引:20,自引:10,他引:10  
广泛出露于华北板块东部辽吉地区的古元古代变质杂岩,多年来一直被认为是古老的陆内裂谷作用的产物,我们通过详细的野外地质调查工作发现,该变质杂岩中以往所划定的混合岩实际是不同变质程度和变形特征的岩浆成因花岗岩岩体,其岩石类型除典型的片麻状角闪正长花岗岩(俗称“条痕状花岗岩”或“辽吉花岗岩”)外,另有片麻状石英闪长岩、巨斑状黑云母二长花岗岩、巨斑状一环斑状舍石榴石花岗岩和角闪辉石正长岩等、,应用SHRIMP技术,本文对片麻状石英闪长岩和巨斑状一环斑状含石榴石花岗岩进行了结石U—Pb同位素年龄测定,结果显示它们的侵位时代为1872~1850Ma,与巨癍状黑云母二长花岗岩和角闪辉石正长杂岩侵位时代相近,岩石学一地球化学特征显示片麻状石英闪长岩是“Ⅰ”型花岗岩,具有岛弧型花岗岩地球化学特征;而巨斑状一环斑状含石榴石花岗岩(局部具有球斑状结构)属“S”型花岗岩结合区内与花岗岩形成同时发生的变质作用P—T特征,这种I-、S-和A-型花岗岩的同时产出,反映他们可能形成于造山后构造背景,结合朝鲜狼林一中国辽南和龙岗太古宙陆块的结晶基底差别,可以认定华北板块在太古宙末期并非仅由东、西部陆块组成,在东部陆块至少还存在朝鲜狼林-辽南-胶东联合陆块和龙岗-鲁西-五准陆块两个微陆块,这两个微陆块大约在1.90Ga左右发生拼合,然后它们再于1.85Ga左右与西部地块拼合  相似文献   

4.
Summary The F-rich Hongshan pluton in the eastern Nanling Range, southern China, is a topaz-bearing albite leucogranite. It is distinctive from other topaz-bearing felsic rocks in South China with respect to age, size, geochemical evolution and topaz mode and morphology. The Hongshan granites are highly peraluminous and characterized by high K2O/Na2O, Si, Rb, Cs, Nb, Ta and F, and low Ca, Ba, Sr, Zr, Hf, P, K/Rb, Zr/Hf and Eu/Eu*. The granites show significant trace-element variations with magma evolution, with increasing Rb, Cs, Nb, Ta, Sn, W and decreasing Sr, Ba, Zr, Hf, Y, REE, Pb, Th, K/Rb, Zr/Hf, Th/U and Eu/Eu*. These changes dominantly reflect fractional crystallization of plagioclase, biotite and accessory minerals such as zircon and monazite. The granites also exhibit a decrease in ɛNd(t = 225 Ma) from −7.9 to −11.7 with magma evolution. Modeling shows that the Nd isotopic variation could result from assimilation of the Taoxi Group wall rocks during fractional crystallization. The Hongshan pluton also shows spatial geochemical variations; the most evolved parts are located in the southeastern part of the pluton, which would be the most likely target area for rare-metal mineralization commonly associated with other topaz-bearing granites. Zircon grains from two rock types in the Hongshan body were analyzed in situ for U–Pb ages and Hf isotopic values. The concordant zircon grains mostly range from 218 to 230 Ma with an average of 224.6 ± 2.3 Ma (Indosinian). Some zircons with different internal structures and Hf isotope compositions, as well as monazite fragments, yield U–Pb ages of ca. 280 to 240 Ma, suggesting older thermal events in the studied area. The ɛHf(t) of these older zircons is strongly negative (−12.3), implying a crustal source with a Paleoproterozoic model age, similar to that for the Proterozoic Zhoutan Group. The main (∼225 Ma) zircon population exhibits less negative ɛHf(t) (−3.0 to −7.6) and Mesoproterozoic model ages, suggesting that the original magma of the Hongshan granite was generated from deeper Mesoproterozoic crust.  相似文献   

5.
The volcanic rocks of the Xiong'er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong'er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong'er Group.The Xiong'er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong'er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zircon ε_(Hf)_(t) values of-17.4 to 8.8,whole-rock initial ~(87)Sr/~(86)Sr values of 0.7023 to 0.7177 andε_(Nd)(t) values of-10.9 to 6.4.and Pb isotopes(~(206)Pb/~(204)Pb =14.366-16.431,~(207)Pb/~(204)Pb =15.106-15.371,~(208)Pb/~(204)Pb= 32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong'er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong'er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.  相似文献   

6.
Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji Massif, within the Tarim Craton in NW China. The meta-gabbroic rocks have Nb contents of 11.5-16.4 ppm with Nb/La ratios varying from 0.84 to 1.02((Nb/La)_N = 0.81-0.98) and Nb/U ratios from 38.0 to 47.2. They show low SiO_2(45.1-48.5 wt.%) and MgO(5.96-6.81 wt.%) and Mg#(Mg# = Mg/(Mg + Fe) = 43.5-47.7), high FeO~t(13.0-15.7 wt.%) and moderate Ti02(1.70-2.51 wt.%).with tholeiitic affinities. These rocks possess low fractionated REE patterns without obvious Eu anomalies(Eu/Eu~* = 0.87-1.02). Their primitive mantle-normalized elements patterns display significant Zr-Hf troughs, positive Nb anomalies, weak negative Ti and P anomalies, and high contents of Rb and Ba,resembling Nb-enriched basalts generated in arc-related tectonic settings. Their arc-like geochemical signatures together with whole rock εNd(t) values of 0.4-2.1 and corresponding old T_(DM)(2.22-2.37 Ga)as well as(~(143)Nd/~(144)Nd)_t and(~(87)Sr/~(86)Sr)t(t = 1712 Ma) values of 0.5104-0.5105 and 0.7030-0.7058,respectively, suggest that their precursor magma originated from mantle wedge peridotite metasomatised by subduction-derived melts. The results from our study reveal subduction along the eastern periphery of the Tarim Craton and marginal outgrowth continuing to ~1.7 Ga within the Columbia supercontinent.  相似文献   

7.
The Precambrian basement of northern Wuyishan (southern Zhejiang Province, eastern Cathaysia Block, South China), consists mainly of Paleoproterozoic granites and metamorphic rocks of the Badu Complex, which are the oldest rocks found in the Cathaysia Block. LA-ICPMS zircon U–Pb ages for a gneiss and five gneissic granites from the Tianhou, Danzhu, Xiaji and Lizhuang plutons indicate that magmatism and metamorphism took place between 1888 and 1855 Ma. The Xiaji (1888 ± 7 Ma) and Lizhuang (1875 ± 9 Ma) granites have high SiO2, K2O and Rb contents, high A/CNK (1.09–1.40) and Rb/Sr, and low contents of Sr, REE and mafic components (Mg, Fe, Ti, Mn and other transition metals). They have the geochemical signature of S-type granites, and a sedimentary protolith is confirmed by the presence of abundant inherited zircons with a range of ages and Hf-isotope compositions. The Tianhou and Danzhu granites are metaluminous to weakly peraluminous (A/CNK = 0.80–1.07), and have low SiO2 contents, high Ga/Al and FeO/(FeO + MgO) ratios, and Zn and HFSE concentrations typical of A-type granites. They also record high crystallization temperatures (885–920 °C), consistent with A-type granites. High Y/Nb ratios (>1.4) indicate that they belong to the A2 subgroup, suggesting that they probably formed in a post-orogenic tectonic setting. Their ages range from 1867 to 1855 Ma, slightly later than the syn-collisional Lizhuang and Xiaji S-type granites. These granitic rocks and the metamorphic rocks of the Badu Complex define a late Paleoproterozoic orogenic cycle in the area. All the 1.86–1.90 Ga zircons, whether derived from S- or A-type granites, show similar Hf-isotopic compositions, with Hf model ages clustering at 2.8 Ga. These model ages, and inherited zircons (ca. 2.5–2.7 Ga) found in some rocks, indicate that the late Paleoproterozoic magmatism and tectonism of the eastern Cathaysia Block represent an overprint on an Archaean basement. This Paleoproterozoic orogeny in the Wuyishan terrane coincides with the assembly of the supercontinent Columbia, suggesting that the Wuyishan terrane was the part of this supercontinent.Zircon ages also record an early Mesozoic (Triassic) tectonothermal overprint that was very intensive in the northern Wuyishan area, leading to high-grade metamorphism of Paleoproterozoic basement, Pb loss from Paleoproterozoic zircons and overgrowth of new zircon. The central and southern parts of Wuyishan and the Chencai area (northern Zhejiang Province) also experienced strong reworking in Neoproterozoic and early Paleozoic times. The Wuyishan terrane (especially in the north) represents a long-lived remnant of the old craton, which has survived for at least one billion years. The compositions of the basement rocks, the Paleoproterozoic orogeny and the Triassic tectonothermal imprint in the Wuyishan terrane are similar to those recognized in the Yeongnam massif of South Korea, suggesting that the two terranes may have been connected from Paleoproterozoic to Triassic time.  相似文献   

8.
The Muju area, located on the north–central margin of the Yeongnam Massif, mainly consists of Precambrian orthogneisses (granitic, leucogranitic, augen and dioritic gneisses) with minor migmatite. Zircon U–Pb dating indicates that the protoliths of the orthogneisses intruded at ca. 2.00–1.97 Ga and were metamorphosed at ca. 1.87–1.86 Ga. Magmatic zircon grains within the orthogneisses have positive to negative εHf(t) values (−7.63 to +3.3) and a Neoarchean two-stage model age (TDM2 = 2.78 Ga), indicating that the protoliths of most of the orthogneisses may have been derived from Archean crustal material. The results of geochemical analysis indicate that the protoliths of the orthogneisses formed by partial melting of metagraywacke and mafic igneous rocks in an arc-related tectonic setting. The intrusion ages and geochemical data of the Paleoproterozoic orthogneisses in the study area match well with those of Paleoproterozoic (ca. 2.00–1.97 Ga) orthogneisses in the northeastern Yeongnam Massif, indicating the presence of regional Paleoproterozoic subduction zones along the northern margin of the Yeongnam Massif at ca. 2.00–1.97 Ga. Meanwhile, ca. 2.00–1.97 Ga subduction-related magmatism has not been reported from the northern Gyeonggi and Nangrim Massifs in the Korean Peninsula or the Jiao–Liao–Ji belt in the eastern North China Craton, indicating that the Yeongnam Massif may not be correlatable with the northern Gyeonggi and Nangrim Massifs or the Jiao–Liao–Ji belt. The Yeongnam Massif may be correlated with the Cathaysia Block in the South China Craton and may have been located near Laurentia and the Siberian Craton within the Columbia supercontinent.  相似文献   

9.
The petrology, mineral compositions, whole rock major/trace element concentrations, including highly siderophile elements, and Re-Os isotopes of 99 peridotite xenoliths from the central North China Craton were determined in order to constrain the structure and evolution of the deep lithosphere. Samples from seven Early Cretaceous-Tertiary volcanic centers display distinct geochemical characteristics from north to south. Peridotites from the northern section are generally more fertile (e.g., Al2O3 = 0.9-4.0%) than those from the south (e.g., Al2O3 = 0.2-2.2%), and have maximum whole-rock Re-depletion Os model ages (TRD) of ∼1.8 Ga suggesting their coeval formation in the latest Paleoproterozoic. By contrast, peridotites from the south have maximum TRD model ages that span the Archean-Proterozoic boundary (2.1-2.5 Ga). Peridotites with model ages from both groups are found at Fansi, the southernmost locality in the northern group, which likely marks a lithospheric boundary. The Neoarchean age of the lithospheric mantle in the southern section matches that of the overlying crust and likely reflects the time of amalgamation of the North China Craton via collision between the Eastern and Western blocks. The Late Paleoproterozoic (∼1.8 Ga) lithospheric mantle beneath the northern section is significantly younger than the overlying Archean crust, indicating that the original lithospheric mantle was replaced in this region, either during a major north-south continent-continent collision that occurred during assembly of the Columbia supercontinent at ∼1.8-1.9 Ga, or from extrusion of ∼1.9 Ga lithosphere from the Khondalite Belt beneath the northern Trans-North China Orogen, during the ∼1.85 Ga continental collision between Eastern and Western blocks. Post-Cretaceous heating of the southern section is indicated by high temperatures (>1000 °C) recorded in peridotites from the 4 Ma Hebi suite, which are significantly higher than the temperatures recorded in peridotites from the nearby Early Cretaceous Fushan suite (<720 °C), and likely reflects significant lithospheric thinning after the Early Cretaceous. Combining previous Os isotope results on mantle xenoliths from the eastern North China Craton with our new data, it appears that lithospheric thinning and replacement may have evolved from east to west with time, commencing before the Triassic on the eastern edge of the craton, occurring during the Jurassic-Cretaceous within the interior, and post-dating 125 Ma on the westernmost boundary.  相似文献   

10.
The Early Precambrian granulite-gneiss complex of the Irkut Block (Sharyzhalgai salient of the Siberian Craton basement) with the protoliths represented by a wide range of magmatic and sedimentary rocks, has a long-term history including several magmatic and metamorphic stages. To estimate the age of sedimentation and metamorphism of the terrigenous deposits, the composition of the garnet-biotite, hyper-sthene-biotite, and cordierite-bearing gneisses has been studied; their isotopic Sm-Nd values have been revealed; and the U-Pb zircon dating has been performed using the SHRIMP II ion microprobe. The protoliths of the terrigenous sediments metamorphosed under conditions of the granulite facies correspond to a rock series from siltstones and graywackes to pelites. The Nd model ages of paragneisses range from 2.4 to 3.1 Ga. Zircons of the cordierite-bearing and hypersthene—biotite gneisses show the presence of cores and rims. The clastic, smoothed, and irregular shape of the cores indicates their detrital character and relicts of oscillatory zoning suggest the magmatic origin of zircon. The rim’s metamorphic genesis is indicated by the lack of zoning and by the lower Th/U ratio compared to that of the cores. The age of the detrital cores (≥2.7, ~2.3, and 1.95—2.0 Ga) and metamorphic rims (1.85–1.86 Ga) defines the time of sedimentation at 1.85–1.95 Ga ago. Potential sources for the Archean detrital zircons were metamagmatic rocks of the granulite—gneiss complexes in the southwestern margin of the Siberian Craton. The age of the dominant detrital cores at 1.95–2.0 Ga ago, together with the minimal TNd(DM) values, indicates the contribution of the juvenile Paleoproterozoic crust to the formation of sediments. The juvenile Paleoproterozoic crust was likely represented by magmatic complexes similar to the volcanic and granitoid associations of the Aldan shield, which were formed 1.99–2.0 Ga ago and showthe model age of 2.0—2.4 Ga. The isotopic Sm-Nd data show that the Late Paleoproterozoic metasedimentary rocks occur not only in the Sharyzhalgai salient but in the Aldan and Anabar shields of the Siberian Craton as well.  相似文献   

11.
We report geochronological, geochemical and isotopic data for the Mesozoic Shangshuiquan granite from the northern margin of the North China craton. The granite is highly fractionated, with SiO2 > 74%. Occurrence of annitic biotite, high contents of alkalis (K2O + Na2O), Rb, Y, Nb and heavy rare earth elements, high FeOt/MgO, low contents of CaO, Al2O3, Ba, and Sr, and large negative Eu anomalies, makes it indistinguishable from typical A-type granites. A mantle-derived origin for the rocks of the granite is not favored because their high initial 87Sr/86Sr (≥0.706) and low εNd (t) (<−15) are completely different from either those of the lithospheric or asthenospheric mantle. In fact, their Sr–Nd isotopes fall within the range of Sr–Nd isotopic compositions of the Archean granulite terrains and are comparable to those of Mesozoic crustal-derived I-type granitoids in the region. Therefore, the Shangshuiquan granite is considered to be dominantly derived from partial melting of the ancient lower crust. Its parental magmas prove to be similar to I-type magmas and to have undergone extensive fractionation during its ascent. This is supported by the fact that some of the nearby Hannuoba feldspar-rich granulite xenoliths can be indeed regarded as the early cumulates in terms of their mineralogy, chemistry, Sr–Nd isotopes and zircon U–Pb ages and Hf isotopes. It is furthermore argued that some of highly fractionated granites worldwide, especially those with A-type characteristics and lacking close relationship with unfractionated rocks, may in fact be fractionated I-type granites. This suggestion can explain their close temporal and spatial associations as well as similar Sr–Nd isotopes with I-type granites. Our study also sheds new light on the petrogenesis of deep crustal xenoliths.  相似文献   

12.
The Dashiqiao Formation on the Liaodong Peninsula constitutes an important component within the Jiao–Liao–Ji Belt, North China Craton. It is composed dominantly of dolomitic marbles intercalated with minor carbonaceous slates and mica schists, hosting one of the largest magnesite deposits on Earth. This study presents zircon cathodoluminescence (CL) images and U–Pb–Hf isotope data, as well as single-mineral geochemical data for the staurolite–garnet–mica schist from the Dashiqiao Formation, in order to constrain its protolith age and provenance, and further to discuss the early Precambrian tectono-thermal events of the North China Craton. U–Pb isotopic dating using the LA–ICP–MS method on detrital zircons from the schist preserves at least three age populations ranging in age from 2.99 to 2.02 Ga, and grains as old as ca 4087 Ma. The dominant Neoarchean detrital zircons were most probably sourced from the basement within the Longgang and Nangrim blocks, while the minor Mesoarchean zircons were only sourced from the Longgang Block. The subordinate middle Paleoproterozoic zircons are consistent with ages of the regionally distributed coeval Liaoji granites and volcanics within the Jiao–Liao–Ji Belt. Zircon U–Pb dating yields a metamorphic age of 1930 Ma for the sample, interpreted to represent the peak stage of epidote amphibolite facies metamorphism. Thus, the depositional age for the protolith of the schist was proposed in the period between 2.01 and 1.93 Ga. LA–MC–ICP–MS Lu–Hf isotopic data show that all Archean (2.45–2.55) detrital zircons possess positive εHf(t) values from +?0.7 to +?7.5 with juvenile depleted mantle model ages, suggesting a significant crustal growth event during the Neoarchean in the North China Craton. The Paleoproterozoic detrital zircons possess variable εHf(t) values (??5.5–+?8.3) and depleted mantle model ages from Mesoarchean to Paleoproterozoic. The zircons with negative εHf(t) values implies the Mesoarchean to Neoarchean crust undergoing a recycling event in the period 2.40–2.01 Ga, while those with positive εHf(t) value suggest some indication of juvenile addition to the crust during the Paleoproterozoic. Using regional geological and new detrital zricon U–Pb–Hf isotopic data, the early Precambrian tectono-thermal events can be subdivided into the following episodes: Mesoarchean, late Neoarchean, middle Paleoproterozoic, and late Paleoproterozoic times.  相似文献   

13.
The Miyun area of Beijing is located in the northern part of the North China Craton(NCC)and includes a variety of Archean granitoids and metamorphic rocks.Magmatic domains in zircon from a tonalite reveal Early Neoarchean(2752±7 Ma) ages show a small range in ε_(Hf)(t) from 3.1 to 7.4and t_(DM1)(Hf) from 2742 to 2823 Ma,similar to their U-Pb ages,indicating derivation from a depleted mantle source only a short time prior to crystallization.SHRIMP zircon ages of granite,gneiss,amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to2496 Ma.They also record metamorphic events at ca.2.50 Ga,2.44 Ga and 1.82 Ga,showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC.Positive ε_(Hf)(t) values of 1.5 to 5.9,with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean.Late Paleoproterozoic metamorphism developed widely in the NCC,not only in the Trans-North China Orogen,but also in areas of Eastern and Western Blocks,which suggest that the late Paleoproterozoic was the assembly of different micro-continents,which resulted in the final consolidation to form the NCC,and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.  相似文献   

14.
This paper discusses geological and geochemical aspects of a Paleoproterozoic volcano-plutonic association that crops out in southwestern Amazonian Craton, Mato Grosso, Brazil. The study area was divided into undeformed and deformed domains, based on structural and geochronology studies. The undeformed domain is composed mainly of felsic explosive and effusive flows. Inter-layered mafic flows of basalts and sedimentary rocks are also present. The deformed domain is mainly composed of titanite and hornblende-bearing monzogranite to syenogranite and biotite monzogranite, while granodiorite is less common. U–Pb single zircon analyses yielded ages of 1.8–1.75 Ga in granites and felsic volcanic rocks for both domains. Basalts from the undeformed domain are phaneritic, fine-grained, and are often hydrothermally altered. They show tholeiitic affinity and are LREE enriched. Their trace element composition resembles those of within-plate associations. The εNd (t = 1.75 Ga) for all these rocks are positive, ranging from 0.12 to 1.49, which reflect a juvenile source. The felsic volcanism comprises subalkaline rocks with high K contents and is divided into two groups: crystal enriched ignimbrites and effusive rhyolites. REE patterns of effusive rocks show negative-Eu anomalies and are smooth in the ignimbrites. Trace element patterns similar to those of the effusive rocks and ignimbrites are found in magmatic rocks derived from sources affected by subduction-related metasomatism. Hornblende and biotite granites occur in the deformed felsic plutonic domain. These rocks show evidence of low-temperature metamorphism and deformation, and in some places, of hydrothermal alteration. The LREE/Nb (or Ta) ratios of these rocks are consistent with those observed in granites of post-collisional settings. The εNd (t = 1.75 Ga) values are slightly negative on average, with few positive values (?1.41 to +2.96). These data are interpreted as indicative of a magmatism produced during a post-collisional event from mixed sources: a metasomatised mantle and a Paleoproterozoic continental crust. An intracontinental shearing with age of 1.7–1.66 Ga created the Teles Pires–Juruena lineament which partially controlled this magmatism.  相似文献   

15.
Eastern Ancient Terrane of the North China Craton   总被引:2,自引:0,他引:2  
Based on the spatial distribution of ancient rocks and zircons, three ancient terranes older than ca. 2.6 Ga have recently been identified in the North China Craton, namely the Eastern, Southern, and Central Ancient Terranes. The Eastern Ancient Terrane is the best studied and understood of the three ancient terranes. It has a long geological history back to ca. 3.8 Ga ago and includes the areas of Anshan-Benxi, eastern Hebei, eastern Shandong and western Shandong. In Anshan-Benxi, several different types of 3.8 Ga rocks were discovered together with 3.1-3.7 Ga rocks, whereas 2.9-3.0 Ga K-rich granites and 2.5 Ga syenogranite occur on larger scales. In eastern Hebei, 3.0-3.4 Ga rocks and older detrital and xenocrystic zircons were identified. In eastern Shandong, there are a large volumes of 2.7 Ga and 2.9 Ga rocks. In western Shandong, early Neoarchean(2.6-2.7 Ga) intrusive and supracrustal rocks are widely distributed. Whole-rock Nd and zircon Hf isotope data suggest that both mantle additions and crustal recycling played important roles within the Eastern Ancient Terrane during almost every tectono-magmatic event. Most BIFs in the North China Craton are late Neoarchean in age and are distributed on continental crust along the western margin of the Eastern Ancient Terrane, probably suggesting that a stable environment was one of the key factors for the formation of large-scale BIFs.  相似文献   

16.
The petrogenetic potential of in situ laser ablation Hf isotope data from melt precipitated zircons was explored through the analyses of about 700 individual crystals derived from about 20 different granitic intrusions covering the Variscan basement segment of eastern Bavaria, SE Germany. In combination with geochemical features, four major suites of granitic rocks can be distinguished: (1) NE Bavarian redwitzites (52–57 wt% SiO2, intrusion ages around 323 Ma) have chondritic εHf(t) values (+0.8 to –0.4). The redwitzites are hybrid rocks and the Hf data are permissive of mixing of a mantle progenitor and crustal melts. (2) Various intermediate rock types (dioritic dyke, granodiorite, palite, 59–63 wt% SiO2, 334–320 Ma) from the Bavarian Forest yield negative εHf(t) values between –3.4 and –5.1. These values which apparently contradict a mantle contribution fingerprint an enriched (metasomatized) mantle component that was mixed with crustal material. (3) Voluminous, major crust forming granites sensu stricto (67–75 wt% SiO2, 328–298 Ma) are characterized by a range in εHf(t) values from –0.5 to –5.6. Different crustal sources and/or modification of crustal melts by various input of juvenile material can explain this variation. (4) Post-plutonic (c. 299 Ma) porphyritic dykes of dacitic composition (64–67 wt% SiO2) from the southern Bavarian Forest have chondritic εHf(t) values (+0.6 to –1.1) and display large intergrain Hf isotope variation. The dykes form a separate petrogenetic group and the Hf data suggest that the zircons crystallized when a pristine mantle-derived parental melt was modified by infiltration of crustal material. The zircon Hf data form a largely coherent positive array with the whole-rock Nd data and both systems yield similar two-stage depleted mantle model ages (1.1–1.7 Ga).  相似文献   

17.
We present results of study of the trace-element and Lu–Hf isotope compositions of zircons from Paleoproterozoic high-grade metasedimentary rocks (paragneisses) of the southwestern margin of the Siberian craton (Irkut terrane of the Sharyzhalgai uplift). Metamorphic zircons are represented by rims and multifaceted crystals dated at ~ 1.85 Ga. They are depleted in either LREE or HREE as a result of subsolidus recrystallization and/or synchronous formation with REE-concentrating garnet or monazite. In contrast to the metamorphic zircons, the detrital cores are enriched in HREE and have high (Lu/Gd)n ratios, which is typical of igneous zircon. The weak positive correlation between 176Lu/177Hf and 176Hf/177Hf in the zircon cores evidences that their Hf isotope composition evolved through radioactive decay in Hf = the closed system. Therefore, the isotope parameters of these zircons can give an insight into the provenance of metasedimentary rocks. The Paleoproterozoic detrital zircon cores from paragneisses, dated at ~ 2.3–2.4 and 2.0–1.95 Ga, are characterized by a wide range of εHf values (from + 9.8 to –3.3) and model age T C 2.8–2.0 Ga. The provenance of these detrital zircons included both rocks with juvenile isotope Hf parameters and rocks resulted from the recycling of the Archean crust with a varying contribution of juvenile material. Zircons with high positive εHf values were derived from the juvenile Paleoproterozoic crustal sources, whereas the lower εHf and higher T C values for zircons suggest the contribution of the Archean crustal source to the formation of their magmatic precursors. Thus, at the Paleoproterozoic stage of evolution of the southwestern margin of the Siberian craton, both crustal recycling and crustal growth through the contribution of juvenile material took place. On the southwestern margin of the Siberian craton, detrital zircons with ages of ~ 2.3–2.4 and 1.95–2.0 Ga are widespread in Paleoproterozoic paragneisses of the Irkut and Angara–Kan terranes and in terrigenous rocks of the Urik–Iya graben, which argues for their common and, most likely, proximal provenances. In the time of metamorphism (1.88–1.85 Ga), the age of Paleoproterozoic detrital zircons (2.4–2.0 Ga), and their Lu–Hf isotope composition (εHf values ranging from positive to negative values) the paragneisses of the southwestern margin of the Siberian craton are similar to the metasedimentary rocks of the Paleoproterozoic orogenic belts of the North China Craton. In the above two regions, the sources of detrital zircons formed by both the reworking of the Archean crust and the contribution of juvenile material, which is evidence for the crustal growth in the period 2.4–2.0 Ga.  相似文献   

18.
白云鄂博位于华北克拉通北缘,是阴山地块的重要组成部分.本文对该区变质基底的5个花岗质岩石样品进行了锆石SHRIMP U-Pb定年,获得了2.63Ga和1.89~2.20Ga的岩浆锆石年龄以及2.47~2.51Ga和1.86~ 1.94Ga的变质锆石年龄.新太古代早期片麻状英云闪长岩的岩浆锆石εHf(t)值和tDM2(C...  相似文献   

19.
胶北地体晚侏罗世下地壳重熔的玲珑黑云母花岗岩大面积出露,其中残留有大量继承锆石,记录了多期热事件,为复杂的地壳演化过程提供了重要线索。论文通过分析玲珑黑云母花岗岩中继承锆石的U-Pb年龄、微量元素和Hf同位素组成,探讨了胶北地体的地壳演化历史。结果显示胶北地体前寒武纪经历了~2.9Ga和~2.7Ga两期主要的地壳生长事件,~2.5Ga和2.2~1.8Ga两期地壳重熔改造事件,~2.5Ga和1.95~1.8Ga两期变质事件。~2.9Ga的岩浆作用形成于岛弧环境,~2.7Ga岩浆活动与下地壳基性物质的部分熔融有关,~2.5Ga发生的岩浆和变质事件与地幔柱底侵作用有关,并有同时期的表壳岩组合-胶东岩群形成。~2.1Ga地壳处于拉张状态,伴有与裂谷活动有关的双峰式岩浆作用,荆山群和粉子山群开始沉积,而后1.95~1.8Ga发生碰撞造山运动,胶北所有早前寒武纪岩石单元卷入此次事件,并发生变质作用。自此之后,直至二叠纪末,胶北处于岩浆活动的沉寂期,但于~1.7Ga和~1.0Ga发生沉积作用,形成芝罘群和蓬莱群。二叠纪末扬子板块向北俯冲于华北克拉通之下,并于三叠纪与华北克拉通发生陆陆碰撞作用,致使扬子板块北缘新元古代花岗岩发生超高压变质,形成苏鲁超高压变质带,之后超高压变质岩发生折返。玲珑黑云母花岗岩复杂的继承锆石组成可能表征了前寒武纪岩石卷入陆-陆碰撞事件而发生再循环作用。  相似文献   

20.
The Palaeoproterozoic Luoling granites occur along the southern margin of the North China Craton. They are rich in silica and total alkalis with SiO2 contents ranging from 65.18 to 72.72 wt.%, K2O from 4.68 to 6.62 wt.%, and Na2O from 1.35 to 4.88 wt.%. They have high Fe*[FeOt/(FeOt + MgO)] ranging from 0.84 to 0.95 wt.% and low MnO (0.03–0.09 wt.%), MgO (0.27–1.55 wt.%), CaO (0.36–2.04 wt.%), TiO2 (0.4–1.12 wt.%), and P2O5 (0.04–0.36 wt.%). Geochemically, they show typical characteristics of A-type granites, such as high contents of alkalis (i.e. high K2O + Na2O, with K2O/Na2O > 1), Rb, Y, Nb, and REEs (except for Eu); high FeOt/MgO and Ga/Al ratios; and low CaO, Al2O3, and Sr contents. New secondary ion mass spectroscopy (SIMS) zircon U–Pb ages reveal that the Luoling granites were emplaced at 1786 ± 7 Ma and thus were approximately coeval with Xiong'er volcanic rocks in the area. Their negative bulk-rock initial Nd and zircon initial Hf isotopic ratios suggest that they have affinities to EM-I-type mantle and both are the products of Xiong'er magmatism during the Palaeoproterozoic. We regard them as produced under a continental rift setting during the Palaeoproterozoic, genetically related to the break-up of the Columbia supercontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号