首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work attempts to reconcile in a common and comprehensive framework the various conflicting results found in the literature regarding Indian Summer Monsoon (ISM) rainfall-Sea Surface Temperature (SST) relationships, especially the links with El-Ni?o Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). To do so, we first examine the linear relationships between ISM rainfall and global SST anomalies during 1950–1976 and 1979–2006 periods. Our results highlight the existence of significant modulations in SST teleconnections and precursory patterns between the first (June–July, JJ) and second part (August–September, AS) of the monsoon. This JJ–AS rainfall dichotomy is more pronounced after the 1976–1977 climate regime shift and tends to blur the global ISM-ENSO signal during the recent period, leading to an apparent weakening of this relationship at the seasonal time scale. Although ISM rainfall in JJ and AS is still strongly linked to ENSO over both periods, the lead-lag relationships between ENSO and AS Indian rainfall have changed during recent decades. Indeed, ENSO variability in the preceding boreal winter has now a significant impact on rainfall variability during the second half of ISM. To evaluate in more details the impact of this JJ-AS dichotomy on the ISM-ENSO-IOD relationships, ISM correlations are also examined separately during El Ni?o and La Ni?a years. Results indicate that the early onset of El Ni?o during boreal spring causes deficient monsoon rainfall in JJ. In response to weaker monsoon winds, warm SST anomalies appear in the west equatorial IO, generating favorable conditions for the development of a positive IOD in AS. Local air-sea processes triggered by the SST anomalies in the eastern node of IOD seem, in turn, to have a more active role on AS rainfall variability, as they may counteract the negative effect of El Ni?o on ISM rainfall via a modulation of the local Hadley circulation in the eastern IO. The JJ–AS rainfall dichotomy and its recent amplification may then result from an enhancement of these IO feedbacks during recent El Ni?o years. This explains why, although El Ni?o events are stronger, a weakening of the ISM-ENSO relationship is observed at the seasonal scale after 1979. Results during La Ni?a years are consistent with this hypothesis although local processes in the southeast IO now play a more prominent role and act to further modulate ISM rainfall in AS. Finally, our results highlight the existence of a biennal rhythm of the IOD-ENSO-ISM system during the recent period, according to which co-occurring El Ni?o and positive IOD events tend to be followed by a warming of the IO, a wet ISM during summer and, finally, a La Ni?a event during the following boreal winter.  相似文献   

2.
Earlier studies show a strong negative relationship between Eurasian snow cover/depth and Indian summer monsoon rainfall (ISMR). In such studies, both the parameters snow and rainfall are seasonally averaged over large areas. Indian summer monsoon has its own characteristics of evolution such as onset, active, break and withdrawal phases which have been studied extensively. However, the evolution of Eurasian snow is yet to be examined. Further, it is interesting to explore the characteristics of evolution of snow over the different regions of Eurasia and their relationship with the evolution characteristics of summer monsoon. In this paper, a detailed examination has been done on the starting and the ending dates of snowfall over different regions of Eurasia and attempts have been made to explore any relationship with onset of ISMR. It is observed that the regions where snowfall started early, it also ended late. Further, in those regions maximum snow depth also occurred late. In some years, more snowfall in East Eurasia is followed by less snowfall in West Eurasia. Also snow depths particularly in the northernmost and southwest regions of East Eurasia are opposite in phase. The results of this study indicate a weak relationship between snow starting dates in Eurasia and summer monsoon onset dates in the Kerala coast. However, the relationship between the northernmost Eurasian snow depth and the summer monsoon precipitation in the Peninsular India is significant.  相似文献   

3.
A 37-year simulation of global climate by a 9-level GCM on an 8°×10° grid showed realistic interannual variation of the computed precipitation over the African Sahel. The model includes an interactive ocean so that interannual variations of sea-surface temperature (SST) also occur. Comparison of an ensemble of five summers that were rainy over the Sahel with five summers of simulated drought showed that insufficient ambient moisture was the immediate cause of the lack of moist convection. The drier conditions are shown to result from weaker moisture advection over the southeast Atlantic Ocean. Weaker southerly winds there and lower sea-level pressure gradients seemed to result from anomalously warm SST. Such SST anomalies have been linked to Sahelian drought in previous observational studies. These regional circulations that were conducive to lower rainfall rates during the north African summer monsoon were not manifestations of the more generalized zonal mean circulation.  相似文献   

4.
5.
To study the time-dependent response of the Asian summer monsoon to obliquity forcing, we analyze a 284,000-year long transient simulation produced by a fully coupled global climate model (GCM) using a new phase mapping (PHASEMAP) approach. Here we focus on understanding the phase response of monsoonal circulation to insolation forcing at the Earth-orbital obliquity band (41 Kyr). Our results show that the East Asian summer monsoon (EASM) can be divided into two geographic regions: the North East Asian summer monsoon (NEASM) and the South East Asian summer monsoon (SEASM). The Indian summer monsoon (ISM) and the SEASM are in phase at the obliquity band, strengthened with an increase in obliquity from Obliquity minima (Omin) to Obliquity maxima (Omax). The NEASM is out of phase with the ISM and SEASM, weakened with an increase in obliquity from Omin to Omax. We hypothesize that the inverse phase between the NEASM and the ISM at the obliquity band results from an ISM–NEASM teleconnection linked to the formation mechanism of the Bonin High.  相似文献   

6.
Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun   总被引:2,自引:0,他引:2  
The latest version of the state-of-the-art global land–atmosphere–ocean coupled climate forecast system of NCEP has shown considerable improvement in various aspects of the Indian summer monsoon. However, climatological mean dry bias over the Indian sub-continent is further increased as compared to the previous version. Here we have attempted to link this dry bias with climatological mean bias in the Eurasian winter/spring snow, which is one of the important predictors of the Indian summer monsoon rainfall (ISMR). Simulation of interannual variability of the Eurasian snow and its teleconnection with the ISMR are quite reasonable in the model. Using composite analysis it is shown that a positive snow anomaly, which is comparable to the systematic bias in the model, results into significant decrease in the summer monsoon rainfall over the central India and part of the Equatorial Indian Ocean. Decrease in the summer monsoon rainfall is also found to be linked with weaker northward propagation of intraseasonal oscillation (ISO). A barotropic stationary wave triggered by positive snow anomaly over west Eurasia weakens the upper level monsoon circulation, which in turn reduces the zonal wind shear and hence, weakens the northward propagation of summer monsoon ISOs. A sensitivity experiment by reducing snow fall over Eurasian region causes decrease in winter and spring snow depth, which in turn leads to decrease in Indian summer monsoon rainfall. Results from the sensitivity experiment corroborate with those of composite analysis based on long free run. This study suggests that further improvements in the snow parametrization schemes as well as Arctic sea ice are needed to reduce the Eurasian snow bias during winter/spring, which may reduce the dry bias over Indian sub-continent and hence predictability aspect of the model.  相似文献   

7.
Both observational and numerical studies suggest that the Eurasian winter snow cover has a strong influence on the subsequent summer monsoon in Asia. An updated version of the ARPEGE climate model of Météo-France, including a simple but physically-based snow parameterization, is used to test the impact of an increased snow mass prescribed at the beginning of March on the simulated summer monsoon circulation and rainfall. The large-scale features of the Asian monsoon are reproduced in a realistic way in the control integration, which is a necessary premise of such a sensitivity test. In the heavy snow cover experiment, the anomalous persistence of the winter snow pack delays the springtime continental heating. This weakens the thermal low over northern India and Persia as well as the southwesterly winds over the monsoon area. There is also a significant decrease in the rainfall over western India and Bengal-Burma, which usually represent the centers of maximum precipitation. Radiative, turbulence transfer and hydrological processes seem to be involved in the snow-monsoon relationship. The changes in the monsoon precipitation are strongly related to changes in the atmospheric circulation and are not reinforced by a local evaporation/convection feedback in our experiment. Received: 17 May 1995 / Accepted: 27 November 1995  相似文献   

8.
Several observational and modeling studies indicate that the Indian summer monsoon rainfall (ISMR) is inversely related to the Eurasian snow extent and depth. The other two important surface boundary conditions which influence the ISMR are the Pacific sea surface temperature (SST) to a large extent and the Indian Ocean SST to some extent. In the present study, observed Soviet snow depth data and Indian rainfall data for the period 1951–1994 have been statistically analyzed and results show that 57% of heavy snow events and 24% of light snow events over west Eurasia are followed by deficient and excess ISMR respectively. Out of all the extreme monsoon years, care has been taken to identify those when Eurasian snow was the most dominant surface forcing to influence ISMR. During the years of high(low) Eurasian snow amounts in spring/winter followed by deficient(excess) ISMR, atmospheric fields such as temperature, wind, geopotential height, velocity potential and stream function based on NCEP/NCAR reanalyses have been examined in detail to study the influence of Eurasian snow on the midlatitude circulation regime and hence on the monsoon circulation. Results show that because of the west Eurasian snow anomalies, the midlatitude circulations in winter through spring show significant changes in the upper and lower level wind, geopotential height, velocity potential and stream function fields. Such changes in the large-scale circulation pattern may be interpreted as precursors to weak/strong monsoon circulation and deficient/excess ISMR. The upper level velocity potential difference fields between the high and low snow years indicate that with the advent of spring, the winter anomalous convergence over the Indian region gradually becomes weaker and gives way to anomalous divergence that persists through the summer monsoon season. Also the upper level anomalous divergence centre shifts from over the Northern Hemisphere and equator to the Southern Hemisphere over the Indian Ocean and Australia.  相似文献   

9.
In this study, the effects of aerosols on the simulation of the Indian monsoon by the NCAR Community Atmosphere Model CAM3 are measured and investigated. Monthly mean 3D mass concentrations of soil dust, black and organic carbons, sulfate, and sea salt, as output from the GOCART model, are interpolated to mid-month values and to the horizontal and vertical grids of CAM3. With these mid-month aerosol concentrations, CAM3 is run for a period of approximately 16 months, allowing for one complete episode of the Indian monsoon. Responses to the aerosols are measured by comparing the mean of an ensemble of aerosol-induced monsoon simulations to the mean of an ensemble of CAM3 simulations in which aerosols are omitted, following the method of Lau et al. (2006) in their experiment with the NASA finite volume general circulation model. Additionally, an ensemble of simulations of CAM3 using climatological mid-month aerosol concentrations from the MATCH model is composed for comparison. Results of this experiment indicate that the inclusion of aerosols results in drops in surface temperature and increases in precipitation over central India during the pre-monsoon months of March, April, and May. The presence of aerosols induces tropospheric shortwave heating over central India, which destabilizes the atmosphere for enhanced convection and precipitation. Reduced shortwave heating and enhanced evaporation at the surface during April and May results in reduced terrestrial emission to cool the lower troposphere, relative to simulations with no aerosols. This effect weakens the near-surface cyclonic circulation and, consequently, has a negative feedback on precipitation during the active monsoon months of June and July.  相似文献   

10.
Summary Three homogeneous subregions of rainfall anomaly are identified in southern Brazil from the precipitation data for the months of June to September for the period 1960–1993. The area average monthly rainfall of these regions is correlated with the Indian monsoon rainfall index (MRI). The correlations are weak; however some significant negative correlation coefficients of the order of 0.3 or higher are found, indicating that more than normal monsoon activity in July has an effect of reducing the rainfall in southern Brazil in austral winter. The relevance of this result lies in the fact that any rainfall shortage in the midwinter and spring seasons can increase ambiental hazards such as forest fires.With 5 Figures  相似文献   

11.
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

12.
Theoretical and Applied Climatology - Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to...  相似文献   

13.
14.
Summary Hindcasts for the Indian summer monsoons (ISMs) of 2002 and 2003 have been produced from an ensemble of numerical simulations performed with a global model by changing SST. Two sets of ensemble simulations have been produced without vegetation: (i) by prescribing the weekly observed SST from ECMWF (European Centre for Medium Range Weather Forecasting) analyses, and (ii) by adding weekly SST anomalies (SSTA) of April to the climatological SST during the simulation period from May to August. For each ensemble, 10 simulations have been realized with different initial conditions that are prepared from ECMWF data with five each from April and May analyses of both the years. The predicted June–July monsoon rainfall over the Indian region shows good agreement with the GPCP (observed) pentad rainfall distribution when 5 member ensemble is taken from May initial conditions. The All-India June–July simulated rainfall time series matches favourably with the observed time series in both the years for the five member ensemble from May initial condition but drifts away from observation with April initial conditions. This underscores the role of initial conditions in the seasonal forecasting. But the model has failed to capture the strong intra-seasonal oscillation in July 2002. Heating over equatorial Indian Ocean for June 2002 in a particular experiment using 29th May 12 GMT as initial conditions shows some intra-seasonal oscillation in July 2002 rainfall, as in observation. Further evaluation of the seasonal simulations from this model is done by calculating the empirical orthogonal functions (EOFs) of the GPCP rainfall over India. The first four EOFs explain more than 80% of the total variance of the observed rainfall. The time series of expansion coefficients (principal components), obtained by projecting on the observed EOFs, provide a better framework for inter-comparing model simulations and their evaluation with observed data. The main finding of this study is that the All-India rainfall from various experiments with prescribed SST is better predicted on seasonal scale as compares to prescribed SST anomalies. This is indicative of a possible useful seasonal forecasts from a GCM at least for the case when monsoon is going to be good. The model responses do not differ much for 2002 and 2003 since the evolution of SST during these years was very similar, hence July rainfall seems to be largely modulated by the other feedbacks on the overall circulation.  相似文献   

15.
16.
The present study is aimed at revisiting the possible influence of the winter/spring Eurasian snow cover on the subsequent Indian summer precipitation using several statistical tools including a maximum covariance analysis. The snow–monsoon relationship is explored using both satellite observations of snow cover and in situ measurements of snow depth, but also a subset of global coupled ocean–atmosphere simulations from the phase 3 of the Coupled Model Intercomparison Project (CMIP3) database. In keeping with former studies, the observations suggest a link between an east–west snow dipole over Eurasia and the Indian summer monsoon precipitation. However, our results indicate that this relationship is neither statistically significant nor stationary over the last 40 years. Moreover, the strongest signal appears over eastern Eurasia and is not consistent with the Blanford hypothesis whereby more snow should lead to a weaker monsoon. The twentieth century CMIP3 simulations provide longer timeseries to look for robust snow–monsoon relationships. The maximum covariance analysis indicates that some models do show an apparent influence of the Eurasian snow cover on the Indian summer monsoon precipitation, but the patterns are not the same as in the observations. Moreover, the apparent snow–monsoon relationship generally denotes a too strong El Niño-Southern Oscillation teleconnection with both winter snow cover and summer monsoon rainfall rather than a direct influence of the Eurasian snow cover on the Indian monsoon.  相似文献   

17.
Weakening of Indian summer monsoon in recent decades   总被引:10,自引:3,他引:10  
The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation intensity. The result shows that Indian summer monsoon circulation underwent two weakening processes in recent decades. The first occurred in circa the mid-1960s, and the other occurred in circa the late 1970s. The finding indicates that the mean tropospheric temperature may play a crucial role in the weakening of the Indian summer monsoon intensity via changing land-sea thermal contrast. The role of the tropospheric temperature contrast between East Asia and the tropical area from the eastern Indian Ocean to the tropical western Pacific is to weaken the Indian summer monsoon circulation.  相似文献   

18.
The regional climate model (RegCM3) from the Abdus Salam International Centre for Theoretical Physics has been used to simulate the Indian summer monsoon for three different monsoon seasons such as deficit (1987), excess (1988) and normal (1989). Sensitivity to various cumulus parameterization and closure schemes of RegCM3 driven by the National Centre for Medium Range Weather Forecasting global spectral model products has been tested. The model integration of the nested RegCM3 is conducted using 90 and 30-km horizontal resolutions for outer and inner domains, respectively. The India Meteorological Department gridded rainfall (1° × 1°) and National Centre for Environment Prediction (NCEP)–Department of Energy (DOE) reanalysis-2 of 2.5° × 2.5° horizontal resolution data has been used for verification. The RegCM3 forced by NCEP–DOE reanalysis-2 data simulates monsoon seasons of 1987 and 1988 reasonably well, but the monsoon season of 1989 is not represented well in the model simulations. The RegCM3 runs driven by the global model are able to bring out seasonal mean rainfall and circulations well with the use of the Grell and Anthes–Kuo cumulus scheme at 90-km resolution. While the rainfall intensity and distribution is brought out well with the Anthes–Kuo scheme, upper air circulation features are brought out better by the Grell scheme. The simulated rainfall distribution is better with RegCM3 using the MIT-Emanuel cumulus scheme for 30-km resolution. Several statistical analyses, such as correlation coefficient, root mean square error, equitable threat score, confirm that the performance of MIT-Emanuel scheme at 30-km resolution is better in simulating all-India summer monsoon rainfall. The RegCM3 simulated rainfall amount is more and closer to observations than that from the global model. The RegCM3 has corrected its driven GCM in terms of rainfall distribution and magnitude over some parts of India during extreme years. This study brings out several weaknesses of the RegCM model which are documented in this paper.  相似文献   

19.
Summary The global spectral model of NCMRWF at T80 horizontal resolution and 18 vertical levels has been integrated for the summer season (July) using different cumulus parameterization schemes namely, the Simplified Arakawa-Schubert scheme (SAS), the Relaxed Arakawa-Schubert Scheme (RAS), and the Kuo-type cumulus parameterization scheme (KUO). The results have been compared with mean analysis of the operational NCMRWF model (ANA) and other available observations. Results indicate that, while the global distributions of basic fields such as the wind, temperature and moisture are fairly well simulated by all the three schemes, there are many differences seen in the simulation of the typical features of the Indian summer monsoon. The strength of the Low Level Westerly Jet (LLWJ), the Cross Equatorial Flow (CEF), and the Tropical Easterly Jet (TEJ) are better simulated by RAS and SAS as compared to ANA than the KUO scheme. RAS and SAS produce strong rising motion owing to strong intensity of convection produced by these two schemes. This in turn produces stronger Hadley cell by RAS and SAS than compared to the KUO scheme. Simulation of the 200 mb velocity potential and divergent wind by RAS and SAS produced two prominent centers, one in the Bay of Bengal and another in the Western Pacific, which correspond to the intense latent heating by cumulus convection during the active monsoon phase. The velocity potential and divergent winds were weaker in KUO, than compared to RAS and SAS. The simulation of OLR is improved by RAS as compared to observations. The cold bias produced by KUO at 200 mb is reduced by RAS and is substantially improved by SAS. Study of observed and simulated rainfall indicated that RAS and SAS produced better distribution of precipitation over the Western Ghat Mountains and the Arakan coast, where deep cumulus convection is produced due to orographic forcing of the warm moist air. The KUO scheme underestimated the rainfall over these two regions, but produced slightly better distribution of rainfall over the northwest and central India, where the intensity of convection is relatively weaker. Evaluation of overall dynamics, thermal structure and rainfall indicates that in general, SAS is able to provide relatively better results compared to other two schemes. Received October 3, 2000/Revised December 5, 2000  相似文献   

20.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号