首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A regional climate model for the western United States   总被引:31,自引:0,他引:31  
A numerical approach to modeling climate on a regional scale is developed whereby large-scale weather systems are simulated with a global climate model (GCM) and the GCM output is used to provide the boundary conditions needed for high-resolution mesoscale model simulations over the region of interest. In our example, we use the National Center for Atmospheric Research (NCAR) community climate model (CCM1) and the Pennsylvania State University (PSU)/NCAR Mesoscale Model version 4 (MM4) to apply this approach over the western United States (U.S.). The topography, as resolved by the 500-km mesh of the CCM1, is necessarily highly distorted, but with the 60-km mesh of the MM4 the major mountain ranges are distinguished. To obtain adequate and consistent representations of surface climate, we use the same radiation and land surface treatments in both models, the latter being the recently developed Biosphere-Atmosphere Transfer Scheme (BATS). Our analysis emphasizes the simulation at four CCM1 points surrounding Yucca Mountain, NV, because of the need to determine its climatology prior to certification as a high-level nuclear waste repository.We simulate global climate for three years with CCM1/BATS and describe the resulting January surface climatology over the western U.S. The details of the precipitation patterns are unrealistic because of the smooth topography. Selecting five January CCM1 storms that occur over the western U.S. with a total duration of 20 days for simulation with the MM4, we demonstrate that the mesoscale model provides much improved wintertime precipitation patterns. The storms in MM4 are individually much more realistic than those in CCM1. A simple averaging procedure that infers a mean January rainfall climatology calculated from the 20 days of MM4 simulation is much closer to the observed than is the CCM1 climatology. The soil moisture and subsurface drainage simulated over 3–5 day integration periods of MM4, however, remain strongly dependent on the initial CCM1 soil moisture and thus are less realistic than the rainfall. Adequate simulation of surface soil water may require integrations of the mesoscale model over time periods.The National Center for Atmospheric Research is sponsored by the National Science Foundation. of up to several months or longer.  相似文献   

2.
Kuo  Chun-Chao  Gan  Thian Yew  Wang  Jingwen 《Climate Dynamics》2020,54(7):3561-3581
Climate Dynamics - A regional climate model, WRF (Weather Research and Forecasting model), was set-up and fine-tuned to simulate the possible impacts of climate change to the Mackenzie River Basin...  相似文献   

3.
Ensemble regional model simulations over the central US with 30-km resolution are analyzed to investigate the physical processes of projected precipitation changes in the mid-twenty-first century under greenhouse gas forcing. An atmospheric moisture balance is constructed, and changes in the diurnal cycle are evaluated. Wetter conditions over the central US in April and May occur most strongly in the afternoon and evening, supported primarily by moisture convergence by transient eddy activity, indicating enhanced daytime convection. In June, increased rainfall over the northern Great Plains is strongest from 0000 to 0600 LT. It is supported by positive changes in stationary meridional moisture convergence related to a strengthening of the GPLLJ accompanied by an intensification of the western extension of the North Atlantic subtropical high. In the Midwest, decreased rainfall is strongest at 1500 LT and 0000 LT. Both a suppression of daytime convection as well as changes in the zonal flow in the GPLLJ exit region are important. Future drying over the northern Great Plains in summer is triggered by weakened daytime convection, and persists throughout August and September when a deficit in soil moisture develops and land–atmosphere feedbacks become increasingly important.  相似文献   

4.
5.
Projections of runoff from global multi-model ensembles provide a valuable basis for the estimation of future hydrological extremes. However, projections suffer from uncertainty that originates from different error sources along the modeling chain. Hydrological impact studies have generally partitioned these error sources into global impact and global climate model (GIM and GCM, respectively) uncertainties, neglecting other sources, including scenarios and internal variability. Using a set of GIMs driven by GCMs under different representative concentration pathways (RCPs), this study aims to partition the uncertainty of future flows coming from GIMs, GCMs, RCPs, and internal variability over the CONterminous United States (CONUS). We focus on annual maximum, median, and minimum runoff, analyzed decadally over the twenty-first century. Results indicate that GCMs and GIMs are responsible for the largest fraction of uncertainty over most of the study area, followed by internal variability and to a smaller extent RCPs. To investigate the influence of the ensemble setup on uncertainty, in addition to the full ensemble, three ensemble configurations are studied using fewer GIMs (excluding least credible GIMs in runoff representation and GIMs accounting for vegetation and CO2 dynamics), and excluding intermediate RCPs. Overall, the use of fewer GIMs has a minor impact on uncertainty for low and medium flows, but a substantial impact for high flows. Regardless of the number of pathways considered, RCPs always play a very small role, suggesting that improvement of GCMs and GIMs and more informed ensemble selections can yield a reduction of projected uncertainties.  相似文献   

6.
Abstract

A þrst climate simulation performed with the novel Canadian Regional Climate Model (CRCM) is presented. The CRCM is based on fully elastic non‐hydrostatic þeld equations, which are solved with an efþcient semi‐implicit semi‐Lagrangian (SISL) marching algorithm, and on the parametrization package of subgrid‐scale physical effects of the second‐generation Canadian Global Climate Model (GCMII). Two 5‐year integrations of the CRCM nested with GCMII simulated data as lateral boundary conditions are made for conditions corresponding to current and doubled CO2 scenarios. For these simulations the CRCM used a grid size of 45 km on a polar‐stereographic projection, 20 scaled‐height levels and a time step of 15 min; the nesting GCMII has a spectral truncation of T32, 10 hybrid‐pressure levels and a time step of 20 min. These simulations serve to document: (1) the suitability of the SISL numerical scheme for regional climate modelling, (2) the use of GCMII physics at much higher resolution than in the nesting model, (3) the ability of the CRCM to add realistic regional‐scale climate information to global model simulations, and (4) the climate of the CRCM compared to that of GCMII under two greenhouse gases (GHG) scenarios.  相似文献   

7.
Changes to soil freezing dynamics with climate change can modify ecosystem carbon and nutrient losses. Soil freezing is influenced strongly by both air temperature and insulation by the snowpack, and it has been hypothesized that winter climate warming may lead to increased soil freezing as a result of reduced snowpack thickness. I used weather station data to explore the relationships between winter air temperature, precipitation and soil freezing for 31 sites in Canada, ranging from the temperate zone to the high Arctic. Inter-annual climate variation and associated soil temperature variation over the last 40 years were examined and used to interpolate the effects of projected climate change on soil freezing dynamics within sites using linear regression models. Annual soil freezing days declined with increasing mean winter air temperature despite decreases in snow depth and cover, and reduced precipitation only increased annual soil freezing days in the warmest sites. Annual soil freeze–thaw cycles increased in both warm and dry winters, although the effects of precipitation were strongest in sites that experience low mean winter precipitation. Overall, it was projected that by 2050, changes in winter temperature will have a much stronger effect on annual soil freezing days and freeze–thaw cycles than changes in total precipitation, with sites close to but below freezing experiencing the largest changes in soil freezing days. These results reveal that experimental data relevant to the effects of climate changes on soil freezing dynamics and changes in associated soil physical and biological processes are lacking.  相似文献   

8.
9.
This study evaluates the UCLA-ETA regional model’s dynamic downscaling ability to improve the National Center for Environmental Prediction Climate Forecast System (NCEP CFS), winter season predictions over the contiguous United States (US). Spatial distributions and temporal variations of seasonal and monthly precipitation are the main focus. A multi-member ensemble means of 22 winters from 1982 through 2004 are included in the study. CFS over-predicts the precipitation in eastern and western US by as much as 45 and 90 % on average compared to observations, respectively. Dynamic downscaling improves the precipitation hindcasts across the domain, except in the southern States, by substantially reducing the excessive precipitation produced by the CFS. Average precipitation root-mean-square error for CFS and UCLA-ETA are 1.5 and 0.9 mm day?1, respectively. In addition, downscaling improves the simulation of spatial distribution of snow water equivalent and land surface heat fluxes. Despite these large improvements, the UCLA-ETA’s ability to improve the inter-annual and intra-seasonal precipitation variability is not clear, probably because of the imposed CFS’ lateral boundary conditions. Preliminary analysis of the cause for the large precipitation differences between the models reveals that the CFS appears to underestimate the moisture flux convergence despite producing excessive precipitation amounts. Additionally, the comparison of modeled monthly surface sensible and latent heat fluxes with Global Land Data Assimilation System land data set shows that the CFS incorrectly partitioned most of surface energy into evaporation, unlike the UCLA-ETA. These findings suggest that the downscaling improvements are mostly due to a better representation of land-surface processes by the UCLA-ETA. Sensitivity tests also reveal that higher-resolution topography only played a secondary role in the dynamic downscaling improvement.  相似文献   

10.
11.
J. Rolf Olsen 《Climatic change》2006,76(3-4):407-426
Federal agencies use flood frequency estimates to delineate flood risk, manage the National Flood Insurance Program, and ensure that Federal programs are economically efficient. The assumption behind traditional flood risk analysis is that climate is stationary, but anthropogenic climate change and better knowledge of interdecadal climate variability challenge the validity of the assumption. This paper reviews several alternative statistical models for flood risk estimation that do not assume climate stationarity. Some models require subjective judgement or presuppose an understanding of the causes of the underlying non-stationarity, which is problematic given our current knowledge of the interaction of climate and floods. Although currently out of favor, hydrometeorological models have been used for engineering design as alternatives to statistical models and could be adapted to different climate conditions. Floodplain managers should recognize the potentially greater uncertainty in flood risk estimation due to climate change and variability and try to incorporate the uncertainties into floodplain management decision-making and regulation.  相似文献   

12.
13.
Cultural ecosystem services represent nonmaterial benefits people derive from the environment; these benefits include outdoor recreation opportunities. Changes in climatic conditions are likely to shift the spatial and temporal demand for recreational ecosystem services. To date, little is known about the magnitude and spatial variability in these shifts across large geographic extents. We use 14 years of geotagged social media data to explore how the climatological mean of maximum temperature affects the demand for recreational ecosystem services by season across public lands in the continental United States. We also investigate how the demand for recreational ecosystem services on public lands may change by 2050 under two climate change scenarios, RCP 4.5 and RCP 8.5. Across all public lands in the continental U.S., demand for recreational ecosystem services is expected to decrease 18% by 2050 under RCP 4.5 in the summer, but increase 12% in the winter and 5% in the spring, with no significant changes in the fall. There is substantial variation in the magnitude of projected changes by region. In the spring and fall, some regions are likely to see an increase in the demand for recreational ecosystem services (e.g., Arkansas-Rio Grande-Texas-Gulf), while others will see declines (e.g., South Atlantic Gulf, California Great Basin). Our findings suggest the total demand for recreational ecosystem services across the continental U.S. is expected to decline under warming temperatures. However, there is a large amount of variation in where, when, and by how much, demand will change. The peak season for visiting public lands is likely to lengthen in the continental U.S. as the climate continues to warm, with demand declining in the summer and growing in the off-season.  相似文献   

14.
A high resolution regional climate model (RCM) is used to simulate climate of the recent past and to project future climate change across the northeastern US. Different types of uncertainties in climate simulations are examined by driving the RCM with different boundary data, applying different emissions scenarios, and running an ensemble of simulations with different initial conditions. Empirical orthogonal functions analysis and K-means clustering analysis are applied to divide the northeastern US region into four climatologically different zones based on the surface air temperature (SAT) and precipitation variability. The RCM simulations tend to overestimate SAT, especially over the northern part of the domain in winter and over the western part in summer. Statistically significant increases in seasonal SAT under both higher and lower emissions scenarios over the whole RCM domain suggest the robustness of future warming. Most parts of the northeastern US region will experience increasing winter precipitation and decreasing summer precipitation, though the changes are not statistically significant. The greater magnitude of the projected temperature increase by the end of the twenty-first century under the higher emissions scenario emphasizes the essential role of emissions choices in determining the potential future climate change.  相似文献   

15.
Summary Illustrative examples are discussed of the interdecadal variability features of the regional climate change signal in 5 AOGCM transient simulations. It is shown that the regional precipitation change signal is characterized by large variability at decadal to multidecadal scales, with the structure of the variability varying markedly across regions. Conversely, the regional temperature change signal shows low interdecadal variability. Results are compared across scenarios, models and different realizations with the same model. Our analysis indicates that, at the decadal scale, linear scaling of the regional climate change signal by the global temperature change works relatively well for temperature but less so for precipitation. The nonlinear fraction of the climate change signal tends to decrease with the magnitude of the signal. The implications of interdecadal variability for the generation of regional climate change scenarios are discussed, in particular concerning the use of multi-experiment ensembles to produce such scenarios.  相似文献   

16.
The variability of mean monthly temperatures in the United States since 1896 is examined. The results show that the interannual variability reached a peak in the decade centered on 1930 and decreased fairly steadily to a minimum in the decade centered on 1970. This temporal trend is almost completely explained by changes in the variability of winter (December, January, February) mean monthly temperatures. The greatest percent decrease in variability occurred in the Midwest.  相似文献   

17.
18.
A regional climate model (RCM) constrained by future anomalies averaged from atmosphere–ocean general circulation model (AOGCM) simulations is used to generate mid-twenty-first century climate change predictions at 30-km resolution over the central U.S. The predictions are compared with those from 15 AOGCM and 7 RCM dynamic downscaling simulations to identify common climate change signals. There is strong agreement among the multi-model ensemble in predicting wetter conditions in April and May over the northern Great Plains and drier conditions over the southern Great Plains in June through August for the mid-twenty-first century. Projected changes in extreme daily precipitation are statistically significant over only a limited portion of the central U.S. in the RCM constrained with future anomalies. Projected changes in monthly mean 2-m air temperature are generally consistent across the AOGCM ensemble average, North American Regional Climate Change Assessment Program RCM ensemble average, and RCM constrained with future anomalies, which produce a maximum increase in August of 2.4–2.9 K over the northern and southern Great Plains and Midwest. Changes in extremes in daily 2-m air temperature from the RCM downscaled with anomalies are statistically significant over nearly the entire Great Plains and Midwest and indicate a positive shift in the warm tail of the daily 2-m temperature distribution that is larger than the positive shift in the cold tail.  相似文献   

19.
Robert Coats 《Climatic change》2010,102(3-4):435-466
The purpose of this study was to quantify the decadal-scale time trends in air temperature, precipitation phase and intensity, spring snowmelt timing, and lake temperature in the Tahoe basin, and to relate the trends to large-scale regional climatic trends in the western USA. Temperature data for six long-term weather stations in the Tahoe region were analyzed for trends in annual and monthly means of maximum and minimum daily temperature. Precipitation data at Tahoe City were analyzed for trends in phase (rain versus snow), decadal standard deviation, and intensity of rainfall. Daily streamflow data for nine gaging stations in and around the Tahoe basin were examined for trends in snowmelt timing, by two methods, and an existing record for the temperature of Lake Tahoe was updated. The results for the Tahoe basin, which contrast somewhat with the surrounding region, indicate strong upward trends in air temperature, a shift from snow to rain, a shift in snowmelt timing to earlier dates, increased rainfall intensity, increased interannual variability, and continued increase in the temperature of Lake Tahoe. Two hypotheses are suggested that may explain why the basin could be warming faster than surrounding regions. Continued warming in the Tahoe basin has important implications for efforts to manage biodiversity and maintain clarity of the lake.  相似文献   

20.
The author “Bhaski Bhaskaran” and his affiliation “Fujitsu Laboratory of Europe, Middlesex, UK” should be replaced by “Balakrishnan Bhaskaran”, “Fujitsu Laboratories of Europe Limited, Hayes Park, Middlesex, UK”, respectively.The corrected name and affiliation are shown in this erratum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号