首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
王国民 《气象科学》2020,40(5):679-685
利用再分析资料分析了MJO(Madden-Julian Oscillation)不同位相对春季中国东部降水的影响。结果表明:MJO处于位相3时对应长江及其以南地区降水增多,处于位相7时该区域降水减小。当热带MJO对流从位相1东传至位相4,与其相伴的北向辐散辐合流会在印度东北部—长江及副热带西北太平洋地区的对流层中低层产生明显的辐合异常,且在MJO位相3时中国东部的辐合异常达到最大。从Rossby波源角度分析,这种辐合异常会增强对流层中低层气旋性环流,导致MJO处于位相3时长江流域及其以南地区降水增多。同时,利用现代次季节和季节预报业务系统探讨了MJO与降水的关系对降水预报技巧的影响,发现预报降水和再分析产品的相关系数在MJO处于位相3和7时有所增加。  相似文献   

3.
中国热带大气季节内振荡研究进展   总被引:6,自引:1,他引:6  
李崇银  凌健  宋洁  潘静  田华  陈雄 《气象学报》2014,72(5):817-834
热带大气季节内振荡(包括MJO)是大气环流的重要系统,它的活动及异常既对其他系统有一定的作用,也对长期天气和短期气候有明显影响。因此,热带大气季节内振荡一直是大气科学的前沿研究课题之一。文中对近5—10年中国学者的有关研究工作及其进展做了简要回顾和综合,主要包括:(1)热带大气季节内振荡特别是MJO的动力学机制;(2)热带大气季节内振荡以及MJO的数值模拟问题,特别是大气非绝热加热廓线对模式模拟MJO的重要作用;(3)热带大气季节内振荡和MJO,特别是在赤道西太平洋地区,与ENSO的相互作用关系;(4)热带大气季节内振荡(包括MJO)及其流场形势对西太平洋台风活动的重要影响,即MJO对西北太平洋台风生成数的调制作用,以及热带大气季节内低频气旋性(LFC)和反气旋性(LFAC)流场对西太平洋台风路径的影响;(5)热带大气季节内振荡(包括MJO)的活动及异常对东亚和南亚夏季风建立、活动异常的影响,以及它们与中国降水异常的密切关系。  相似文献   

4.
The Madden-Julian oscillation (MJO) simulated by the Canadian Climate Centre general circulation model (CCC GCM) is identified by a principal oscillation pattern (POP) analysis and compared with that observed in the real atmosphere. The results are based upon two integrations of the CCC GCM, one with a parameterization of penetrative cumulus convection (EXP1) and the other with a moist convective adjustment scheme (EXP2). The signal of MJO can be detected in both integrations as the first POP of the 200 hPa velocity potential along the equator. The disturbances show a distinctive wave number one structure with the strongest local amplitude found in the longitudes corresponding to the region of the Asian monsoon. The phase speed of the eastward wave propagation is higher in the eastern Pacific and lower in the monsoon region where the convective activities are strongest. These features are in good agreement with the observations. The energy spectrum of the velocity potential peaks at the frequency corresponding to a period of about 38 days for EXP1, which is somewhat shorter compared to the observed periods of 40–50 days. On the other hand, two spectral peaks can be clearly identified for EXP2, one with a period of 24 days and the other with a much longer period, somewhere near 112 days. Both peaks appear statistically significant at 95% level. Long term data of the observed atmosphere show little indication of such spectral separation. The horizontal patterns identified by the POP analysis resemble to some extent the baroclinic response of tropical flow to a heat source travelling with the speed of MJO. At the upper level, Rossby wave energy propagates westward with winds generally following the height contours, whereas Kelvin wave energy propagates to the east from the heat source with strong cross-contour flow near the equator. At the lower level, the patterns are essentially reversed. The model-generated precipitation and diabatic heating are examined by compositing against the moving MJO. It is found in EXP2 that the composite heating distribution is coherent with the flow pattern only in a certain sector of the equator, depending on whether the fast or slow mode is used to determine the reference point. The composite vertical heating profile of a slower mode tends to have a maximum found at a lower level. The sensitivity of simulated MJO to the cumulus convection scheme in the model is discussed. Received: 19 December 1994 / Accepted: 11 July 1995  相似文献   

5.
利用1982-2011年夏季(5-8月)中国气象观测站点逐日降水资料、NCEP/NCAR逐日再分析资料、NOAA逐日向外长波辐射和海表温度资料集,通过选取低频降水事件的方法,分析了华南夏季12-30 d持续性强降水事件的基本特征,然后利用位相合成法对持续性强降水期间伴随的低频大气环流型以及低频信号的来源和传播情况进行研究,同时也分析了低频海-气耦合过程对持续性强降水的影响。结果表明:(1)华南夏季降水具有显著的12-30 d低频振荡特征,持续性强降水事件在6月发生次数最多,低频降水期间的雨带自东南向西北传播。(2)在持续性强降水发生期间,华南及邻近海域低层受强大的低频气旋式环流控制,低频上升运动显著,而中国南海-菲律宾海一带则是强的低频反气旋式环流,其西侧向北的低频水汽输送不断将中国南海的水汽送至华南及邻近海域进行辐合上升。低层的低频信号来源于热带西太平洋和中国南海-菲律宾海一带低频振荡的西北向传播,同时伴随着西太平洋副热带高压明显的西伸东退过程。(3)在高层,华南北侧(22°-45°N,95°-130°E)区域强大的低频气旋式环流和孟加拉湾-中国南海一带的低频反气旋式环流相互配合,使华南高层处于强大的辐散环境中,从而加强了华南低层的辐合与低频上升运动,造成持续性强降水的增强。高层的低频信号来源于低频罗斯贝波列的东南向传播。(4)低频大气环流异常通过云辐射和热通量过程改变低频海表温度异常,而由大气强迫的低频海表温度异常通过影响低层大气的稳定性来对大气施加明显的反馈作用,该海-气耦合过程有利于大气低层低频信号向华南地区传播,从而影响了华南持续性强降水的发生、发展与结束。  相似文献   

6.
By analyzing NCEP-NCAR reanalysis daily data for 1979–2016, the modulation by Madden-Julian Oscillation (MJO) of the wintertime surface air temperature (SAT) over high latitude is examined. The real-time multivariate MJO (RMM) index, which divides the MJO into eight phases, is used. It is found that a significantly negative SAT anomaly over the northern high latitude region of (180°–60 °W, 60°–90 °N) lags the MJO convection for 1∼2 weeks in phase 3, in which the enhanced convective activity exists over the Indian Ocean. While a significantly positive SAT anomaly appears over the same region following the MJO phase 7, as the tropical heating shows an opposite sign. Analysis of the anomalous circulation indicates that the observed SAT signal is probably a result of the northeastward propagating Rossby wave train triggered by MJO-related tropical forcing through Rossby wave energy dispersion. By using an anomalous atmospheric general circulation model (AGCM), the significant effect of tropical forcing on organizing the extratropical circulation anomaly is confirmed. Analysis of a temperature tendency equation further reveals that the intraseasonal SAT anomaly is primarily attributed to the advection of the mean temperature by the wind anomaly associated with the anomalous circulation of the MJO-related variability.  相似文献   

7.
利用1978-2013年美国NOAA逐候MJO指数和中国气象局上海台风研究所热带气旋资料,研究了MJO与影响广西热带气旋发生发展的联系。结果表明,当MJO处于非洲大陆和西印度洋时,热带气旋生成区域上空为异常东风带;而当MJO处于西太平洋时,热带气旋生成区域北侧为东风异常带、南侧为西风异常带,有利于季风槽或气旋性环流加强,导致影响广西热带气旋频数偏多。当MJO处于东印度洋时,南海上空风场存在明显的向南分量,热带气旋生成数少、位置偏南;而当MJO处于东太平洋时,热带西太平洋对流受到抑制,导致影响广西热带气旋偏少。  相似文献   

8.
The convective equatorial waves in the NCEP/NCAR reanalysis and intermediate complexity atmospheric model QTCM are studied on the base of double space-time spectral analysis. The frequency-wavenumber spectra of outgoing longwave radiation, precipitation, zonal wind stress and net heat flux are obtained. Further, the propagation characteristics, amplitude and seasonal variability of filtered waves are analyzed. It is shown that QTCM simulates a wide variety of equatorial waves that share many characteristics with the observations. It is suggested that convective scheme applied in the model allows for simulation of interaction at interannual-intraseasonal time scales. The role of interannual SST forcing and extratropical excitation is elucidated using the model’s experiments with specific boundary conditions.  相似文献   

9.
Systematic model error remains a difficult problem for seasonal forecasting and climate predictions. An error in the mean state could affect the variability of the system. In this paper, we investigate the impact of the mean state on the properties of ENSO. A set of coupled decadal integrations have been conducted, where the mean state and its seasonal cycle have been modified by applying flux correction to the momentum-flux and a combination of heat and momentum fluxes. It is shown that correcting the mean state and the seasonal cycle improves the amplitude of SST inter-annual variability and also the penetration of the ENSO signal into the troposphere and the spatial distribution of the ENSO teleconnections are improved. An analysis of a multivariate PDF of ENSO shows clearly that the flux correction affects the mean, variance, skewness and tails of the distribution. The changes in the tails of the distribution are particularly noticeable in the case of precipitation, showing that without the flux correction the model is unable to reproduce the frequency of large events. For the inter-annual variability the momentum-flux correction alone has a large impact, while the additional heat-flux correction is important for the teleconnections. These results suggest that the current forecasts practices of removing the forecast bias a-posteriori or anomaly initialisation are by no means optimal, since they can not deal with the strong nonlinear interactions. A consequence of the results presented here is that the predictability on annual time-ranges could be higher than currently achieved. Whether or not the correction of the model mean state by some sort of flux correction leads to better forecasts needs to be addressed. In any case, flux correction may be a powerful tool for diagnosing coupled model errors and predictability studies.  相似文献   

10.
Intraseasonal Oscillation in the Tropical Indian Ocean   总被引:1,自引:1,他引:1  
1. Introduction The intraseasonal oscillation (ISO or Madden- Julian Oscillation, MJO) in the tropical atmosphere has been studied extensively, including its existence, structure, evolution and propagation (Madden and Ju- lian, 1971; Murakami, et al., 198…  相似文献   

11.
Summary Based on analysis of ECMWF data (1981–1987) and numerical simulations using a general circulation model (GCM), a quasi-two-week (10–20 day) oscillation in the tropical atmosphere is studied in this paper. It is shown that the kinetic energy of the quasi-two-week oscillation is larger than that of the intraseasonal oscillation, and is another important low-frequency system in the tropical atmosphere. By comparing it with the intraseasonal oscillation, some obvious differences can be found. For example, the zonal scale of the quasi-two-week oscillation is dominated by perturbations with wavenumber 2–4; its vertical structure mainly shows barotropic features; the zonal propagation is basically westward; and its meridional and zonal components the same size.With 10 Figures  相似文献   

12.
In the past decade there has been extensive research into tropical intraseasonal variability, one of the major com-ponents of the low frequency variability of the general atmospheric circulation. This paper briefly reviews the state-of-the-art in this research area: the nature of the Madden-Julian Oscillation, its relation to monsoonal and extratropical circulations, and the current theoretical understandings.  相似文献   

13.
热带太平洋海表温度年际变化对降水季节内振荡的影响   总被引:6,自引:0,他引:6  
根据 1982—1992年期间的日平均 MSU(Spencer, 1993)海洋降水和 5天平均的CMAP(Xie& Arkin, 1997)降水观测资料,分析了热带太平洋大气季节内振荡(MJO)的年际变化特征。在太平洋海表温度(SST)年际变化的正常年份(1982—83年, 1986—88年, 1991—92年),均有明显的MJO信号传到日界线以东并在中、东太平洋维持数月。热带MJO活动强度的年际变化与局地SST的变化存在正相关。中、东太平洋降水的季节内振荡的年际变化与热带太平洋SST的最强正相关在Nino3区附近。以观测SST场强迫CCM3大气模式的数值试验基本上真实地再现了11年期间热带太平洋降水季节内振荡的年际变化总趋势,但模拟季节内振荡的强度较观测平均偏弱。对比分别采用周平均和月平均SST强迫场的积分结果,发现在中、东太平洋,二个积分模拟的降水季节内振荡强度的年际变化接近并且趋势与观测基本一致,而在西太平洋二个积分的模拟结果差别较大。这表明在热带中、东太平洋,SST强迫的年际变化对MJO强度的变化有强的制约。而在MJO总体活跃的热带西太平洋,SST强迫场的季节变化对模拟MJO活动也有较大影响。CCM3模拟  相似文献   

14.
Plume meandering and averaging time effects were measured directly using a high spatial resolution, high frequency, linescan laser-induced fluorescence (LIF) technique for measuring scalar concentrations in a plume dispersing in a water channel. Post-processing of the collected data removed time dependent background dye levels and corrected for attenuation across the laser beam to produce accurate measurements over long sample times in both a rough surface boundary-layer shear flow and shear free grid-generated turbulent flow. The data were used to verify the applicability of a meandering plume model for predicting the properties of mean and fluctuating concentrations. The centroid position of the crosswind concentration profile was found to have a Gaussian probability density function and the instantaneous plume spread about the centroid fluctuated log-normally. A modified travel-time power law model for averaging time adjustment was developed and compared to the widely used, but much less accurate, 0.2 power-law model.  相似文献   

15.
Bimodal representation of the tropical intraseasonal oscillation   总被引:1,自引:1,他引:1  
The tropical intraseasonal oscillation (ISO) shows distinct variability centers and propagation patterns between boreal winter and summer. To accurately represent the state of the ISO at any particular time of a year, a bimodal ISO index was developed. It consists of Madden-Julian Oscillation (MJO) mode with predominant eastward propagation along the equator and Boreal Summer ISO (BSISO) mode with prominent northward propagation and large variability in off-equatorial monsoon trough regions. The spatial–temporal patterns of the MJO and BSISO modes are identified with the extended empirical orthogonal function analysis of 31?years (1979–2009) OLR data for the December–February and June–August period, respectively. The dominant mode of the ISO at any given time can be judged by the proportions of the OLR anomalies projected onto the two modes. The bimodal ISO index provides objective and quantitative measures on the annual and interannual variations of the predominant ISO modes. It is shown that from December to April the MJO mode dominates while from June to October the BSISO mode dominates. May and November are transitional months when the predominant mode changes from one to the other. It is also shown that the fractional variance reconstructed based on the bimodal index is significantly higher than the counterpart reconstructed based on the Wheeler and Hendon’s index. The bimodal ISO index provides a reliable real time monitoring skill, too. The method and results provide critical information in assessing models’ performance to reproduce the ISO and developing further research on predictability of the ISO and are also useful for a variety of scientific and practical purposes.  相似文献   

16.
East Atlantic oscillation of the atmospheric circulation   总被引:1,自引:0,他引:1  
For the period 1950–2007, the comparison is made between the indices of the East Atlantic and North Atlantic oscillations and between the features of the atmospheric circulation and temperature regime of the Atlantic-European region connected with various combinations of indices. The analysis is made for the factors which have caused long difference in indices in 1996–2007 and for possible causes of anomalously warm winter in Europe in 2006–2007.  相似文献   

17.
Increased evidence has shown the important role of Atlantic sea surface temperature(SST) in modulating the El Nio-Southern Oscillation(ENSO). Persistent anomalies of summer Madden-Julian Oscillation(MJO) act to link the Atlantic SST anomalies(SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic(anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive(negative) SSTA in spring, and it intensifies(weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure(low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid-and low-latitudes by a circumglobal teleconnection pattern, leading to strong(weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

18.
 Experiments using a GCM with two different vertical resolutions show differences in the amount of variability in the tropical upper tropospheric zonal wind component associated with the Madden-Julian Oscillation (MJO). The GCM with lower vertical resolution shows very little variability in this quantity whereas when the vertical resolution is doubled in the free troposphere, the GCM produces variability which is of the same strength as observations. However, the eastward propagation of an enhanced convective region from the Indian Ocean into the west Pacific is not well represented in either simulation of this atmospheric GCM. A water-covered or “aqua-planet” version of the same GCM is used to investigate the behaviour of tropical convection when the vertical resolution is doubled. When the vertical resolution is increased, the spectrum of tropical cloud types changes from a bimodal distribution with peaks representing shallow cumulus and deep cumulonimbus clouds to a trimodal distribution with a third peak in mid-troposphere near the melting level. Associated with periods when these mid-level congestus clouds are dominant, the detrainment from these clouds significantly moistens the mid-troposphere. The appearance of these congestus clouds is shown to be partly due to improved resolution of the freezing level and the convective processes occurring at this level. However, due to the way in which convective detrainment is parametrized in this model, the vertical profile becomes rather noisy and this too contributes to the change in the nature of the convective clouds. The resulting cloud distribution more closely resembles observations, particularly during the suppressed phase of the MJO when cumulus congestus is the dominant cloud type. Received: 17 April 2000 / Accepted: 30 November 2000  相似文献   

19.
In Part I (Storch and Xu 1990) the principal oscillation pattern (POP) analysis of 200 mb equatorial velocity potential leads to the definition of a bivariate (POP-) index of the tropical 30- to 60-day oscillation. Using the POP prediction scheme this index is predictable for a few days in advance. In Part 11, the prediction of the equatorial velocity potential field, made by the POP method and made by two GCMs, is investigated. The POP index forecast can incorporate skillful forecasts of the equatorial velocity potential () field. Its ensemble correlation skill score passes the 0.50 level at 7 days, whereas persistence passes after 3 days. If there is a strong 30- to 60-day oscillation signal in the initial state, useful forecasts of more than 20 days are sometimes possible; if the initial signal is weak, the POP forecast fails. Also, the forecast skill of two GCMs is considered. The NCAR T31 GCM appears to be quite skillful in predicting the equatorial -field, and in particular the 30- to 60-day oscillation. Its skill, however, is less than that of the POP scheme. The CNRM T42 GCM seems not to be able to predict the regular development associated with the tropical 30- to 60-day oscillation. The power of the POP index in explaining the equatorial x-field is a measure of the strength and dominance of the 30- to 60-day oscillation. This measure at day 0 is an a priori indicator of the NCAR T31 GCM's skill in predicting the equatorial velocity potential field.The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

20.
The Principal Oscillation Pattern technique is used to derive an index of the 30- to 60-day oscillation in the tropical troposphere. In the 200-mb equatorial velocity potential field, one dominant pair of POPS is found. Its properties compare very well with the properties of the oscillation identified in previous studies. In particular, a good correlation between the time evolution of the POP coefficients and area-averaged outgoing long-wave radiation (ORL) is found. The POPS are derived from a 2-year subinterval of the whole 5-year data set. This leaves independent data for subsequent verification. The patterns and their characteristic numbers are almost unchanged if the whole data set is analysed. Also, the analysis is insensitive to changes of the analysis area: if the analysis is limited to 90°-longitude equatorial sectors, the signal is also identified and its patterns are consistent with the patterns derived from the full data set. Interestingly, the signal is best defined in the eastern hemisphere. The POPS may be used to derive associated correlation patterns of other quantities in winter and summer separately. The path of the oscillation has a marked annual cycle: in northern winter it migrates from the Indian Ocean across northern Australia into the region of the South Pacific Convergence Zone (SPCZ) and in northern summer it moves from the Indian Ocean across South Asia along the intertropical Convergence Zone (ITCZ) to South America. The POP coefficient may be seen as a bivariate index of the state (phase and strength) of the 30- to 60-day oscillation. Since the POP technique incorporates a prediction equation for the phase of the POP coefficients, the POP model allows for the prediction of the complex amplitude of the oscillation. In a sequence of forecast experiments, of which about two-thirds used independent data, the POP forecasts were found to be useful in about half of all cases for lead times of several days. The correlation and RMS skills were calculated for the POP forecast and for persistence. The POP forecast appears to be considerably better with respect to both measures. The correlation skill scores 60% after 7 days. The POP forecast is most skillful in northern winter and if strong signals are present with minima of velocity potential in the eastern hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号