首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of uniformly polytropes with axial symmetry is extended to include all rotational terms of order 4, where is the angular velocity, consistently within the first post-Newtonian approximation to general relativity. The equilibrium structure is determined by treating the effects of rotation and post-Newtonian gravitation as independent perturbations on the classical polytropic structure. The perturbation effects are characterized by a rotation parameter = 2/2G c and a relativity parameter, =p c / c C 2 , wherep c and c are the central pressure and density respectively. The solution to the structural problem is obtained by following Chandrasekhar's series expansion technique and is complete to the post-Newtonian rotation terms of order 2. The critical rotation parameterv c , which characterizes the configuration with maximum uniform rotation, is accurately evaluated as a function of . Numerical values for all the structural parameters needed to determine the equilibrium configurations are presented for polytropes with indicesn=1, 1.5, 2, 2 5, 3, and 3.5.  相似文献   

2.
The equations which govern the structure of a rotating, truncated isothermal sphere in the post-Newtonian approximation of general relativity are derived and solved numerically. Each model is parameterized by both a rotation and a relativity parameter. The density inside the configurations is tabulated and graphed as a function of both distance from the center and co-latitude. Relativistic gravitational effects are found to pull the models into states which are considerably more centrally condensed than one predicts classically. Rotation tends to flatten the isothermal configurations into oblate spheroids, though for even the largest rotation parameters the degree of flattening is only a few percent. The computed models may be similar to the cores of relativistic star clusters.  相似文献   

3.
Maclaurin's P-ellipsoid, which is an equilibrium figure in the post-Newtonian approximation of general relativity, is constructed in the neighbourhood of Maclaurin's classical ellipsoid. Its shape and rotation velocity are investigated. It is shown that in the case of a P-ellipsoid with the mass and the angular momentum of a basic ellipsoid the effects of general relativity reduce the rotation velocity and decrease its volume.  相似文献   

4.
A set of equations, which are magnetohydrodynamic (MHD) equilibrium conditions in the post-Newtonian approximation of general relativity (PNA of GR), is obtained. The given system generalizes the previously obtained magnetohydrodynamic equilibrium conditions of classical mechanics and the hydrodynamic equilibrium conditions in the PNA of GR.  相似文献   

5.
In this paper we present a second order post-Newtonian approximation to the Hamiltonian of theN-body system. Subsequently we improve the well-known Robertson's formula for the perihelion advancement by a correction term of orderc, wherec –4 is the velocity of light.  相似文献   

6.
By using the Cowling approximation, quasi-radial modes of rotating general relativistic stars are computed along equilibrium sequences from non-rotating to maximally rotating models. The eigenfrequencies of these modes are decreasing functions of the rotational frequency. The eigenfrequency curve of each mode as a function of the rotational frequency has discontinuities, which arise from the avoided crossing with other curves of axisymmetric modes.  相似文献   

7.
8.
A highly accurate, multidomain spectral code is used in order to construct sequences of general relativistic, differentially rotating neutron stars in axisymmetry and stationarity. For bodies with a spheroidal topology and a homogeneous or an   N = 1  polytropic equation of state, we investigate the solution space corresponding to broad ranges of degree of differential rotation and stellar densities. In particular, starting from static and spherical configurations, we analyse the changes of the corresponding surface shapes as the rate of rotation is increased. For a sufficiently weak degree of differential rotation, the sequences terminate at a mass-shedding limit, while for moderate and strong rates of differential rotation they exhibit a continuous parametric transition to a regime of toroidal fluid bodies. In this article, we concentrate on the appearance of this transition, analyse in detail its occurrence and show its relevance for the calculation of astrophysical sequences. Moreover, we find that the solution space contains various types of spheroidal configurations, which were not considered in previous work, mainly due to numerical limitations.  相似文献   

9.
We find that in general relativity slow down of the pulsar rotation due to the magnetodipolar radiation is more faster for the strange star with comparison to that for the ordinary neutron star of the same mass. Comparison with astrophysical observations on pulsars spindown data may provide an evidence for the strange star existence and, thus, serve as a test for distinguishing it from the neutron star.  相似文献   

10.
The explicit forms of the metric as well as the equations of motion in the first-order post-Newtonian approximation are worked out under several gauge conditions. It is noted that the so-called EIH (Einstein, Infeld, and Hoffman) equation of motion for an assembly ofN finite mass points mutually interacting via gravitation is identically obtained under three different gauge conditions, namely the harmonic gauge, Chandrasekhar gauge and a composite Chandrasekhar gauge used by Misneret al. (1970), even though the solutions for the metric are found to be all different. In one case the metric has a component apparently diverging, but finally generates regular affine connections so that the equations of motions become free from any singularity. By use of the Chandrasekhar gauge and his formulation, the second-order contribution to the acceleration of planets in the limit of test particle motion around the Sun has been calculated, the inclusion of which in the EIH set of the equations of motion would extend the relative accuracy of computing the total acceleration of any planet to better than one part in 1017.  相似文献   

11.
In an investigation of the evolution of homogeneous, isentropic, stars through stages of diminishing entropy, Rakavy and Shaviv (1968) have recently found that stars of mass less thanM c (Chandrasekhar's limiting mass for white dwarfs) evolve into white dwarfs, while stars of mass greater thanM c approach a (singular) state of minimum entropy. An elementary explanation of these results is given and qualitative effects of general relativity are discussed. It is found that stars which are lighter than the Oppenheimer and Volkoff (1939) limit become white dwarfs, while heavier stars must become dynamically unstable at a finite stage in their evolution.  相似文献   

12.
Evolutionary tracks up to the point of dynamical instability are obtained for isentropic objects with rest masses ranging from 102 M to 107 M . Accurate values for the red shift, specific entropy, luminosity and effective temperature at the onset of collapse are given.  相似文献   

13.
It has been found that in general relativity slow down due to the energy losses through charged particles outflow in plasma magnetosphere strongly depends on star’s compactness parameter and is more faster for the neutron star with comparison to that for the strange star of the same mass. Comparison with astrophysical observations on pulsars spin down precise data may provide important information about star’s compactness parameter and consequently an evidence for the strange star existence and, thus, serve as a test for distinguishing it from the neutron star.  相似文献   

14.
The post-Newtonian approximation for general relativity is widely adopted by the geodesy and astronomy communities. It has been successfully exploited for the inclusion of relativistic effects in practically all geodetic applications and techniques such as satellite/lunar laser ranging and very long baseline interferometry. Presently, the levels of accuracy required in geodetic techniques require that reference frames, planetary and satellite orbits and signal propagation be treated within the post-Newtonian regime. For arbitrary scalar W and vector gravitational potentials \(W^j (j=1,2,3)\), we present a novel derivation of the energy associated with a test particle in the post-Newtonian regime. The integral so obtained appears not to have been given previously in the literature and is deduced through algebraic manipulation on seeking a Jacobi-like integral associated with the standard post-Newtonian equations of motion. The new integral is independently verified through a variational formulation using the post-Newtonian metric components and is subsequently verified by numerical integration of the post-Newtonian equations of motion.  相似文献   

15.
16.
17.
18.
A stability criterion is given for the equilibrium form of an ideal rotating fluid in the post-Newtonian approximation. This generalizes the known Lyapunov criterion in classical dynamics. The sphere stability is also investigated and it is shown that it is stable only whenR>22.2R g (R is the relativistic sphere radius,R g the Schwarzschild radius).  相似文献   

19.
Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core collapse, crust- and core-quakes or binary mergers, and could become detectable in either gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, non-linear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l =0 , 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit to the mass-shedding limit. The frequencies of the axisymmetric modes are affected significantly by rotation only when the rotation rate exceeds about 50 per cent of the maximum allowed. As expected, at large rotation rates, apparent mode crossings between different modes appear. In addition to the above modes, several axisymmetric inertial modes are also excited in our numerical evolutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号