首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7–17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.  相似文献   

2.
The retreat of mountain glaciers and ice caps has dominated the rise in global sea level and is likely to remain an import component of eustatic sea‐level rise in the 21st century. Mountain glaciers are critical in supplying freshwater to populations inhabiting the valleys downstream who heavily rely on glacier runoff, such as arid and semi‐arid regions of western China. Owing to recent climate warming and the consequent rapid retreat of many glaciers, it is essential to evaluate the long‐term change in glacier melt water production, especially when considering the glacier area change. This paper describes the structure, principles and parameters of a modified monthly degree‐day model considering glacier area variation. Water balances in different elevation bands are calculated with full consideration of the monthly precipitation gradient and air temperature lapse rate. The degree‐day factors for ice and snow are tuned by comparing simulated variables to observation data for the same period, such as mass balance, equilibrium line altitude and glacier runoff depth. The glacier area–volume scaling factor is calibrated with the observed glacier area change monitored by remote sensing data of seven sub‐basins of the Tarim interior basin. Based on meteorological data, the glacier area, mass balance and runoff are estimated. The model can be used to evaluate the long‐term changes of melt water in all glacierized basins of western China, especially for those with limited observation data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This research demonstrates the spatiotemporal variations of albedo on nine glaciers in western China during 2000–2011, by the albedo derived from two types of datasets: Landsat TM/ETM + images and MOD10A1 product. Then, the influence factors of glacier albedo and its relationship with glacier mass balance are also analyzed by the correlation approach, which is frequently used in geostatistics. The paper finds that there are different spatiotemporal variations over the glaciers in western China: (1) For a single glacier, the albedo varies gently with altitude on its tongue and increases fast in the middle part, while in the accumulation zones, the albedo value appears in the form of fluctuation. This could provide a quantitative method to retrieve the snowline by determining the threshold albedo value of snowpack and bare ice. (2) For the glaciers in western China, the albedo decreases with distance to the center of Tibetan Plateau (TP). This may relate to the elevation of glacier, for the speed of glacier retreat highly depends on air temperature. (3) In the summer period, albedo on most glaciers declines over the last 12 years, and it decreases much faster in southeastern TP than other regions, for which air temperature overwhelms the black carbon concentration. In addition, the trend of glacier albedo in summer is greatly correlated with that of measured glacier mass balance, which implies that the long‐term albedo datasets by remote sensing technology could be used to monitor and predict the change of glacier mass balance in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Various parameters of the most recent surge of the polythermal glacier Comfortlessbreen in northwest Svalbard, have been assessed through a combination of remote sensing and ground observations. Analysis of a digital elevation model time‐series shows a marked change in the geometry of the glacier from quiescence (1990 and earlier) into the late surge phase (2009). The transfer of 0.74 km3 of ice caused up to 80 m of surface drawdown in the reservoir area, above the equilibrium line, whilst ice built up in a spatially concentrated manner in the receiving zone, below the equilibrium line. A ramp of ice, c. 100 m above quiescent level, developed in the lower reaches of the glacier late in the surge. Also in the lower reaches of the glacier, structures attributable to the passage of a kinematic wave are identified and the migration of a surge front on the glacier is thus inferred. In a conceptual model, we consider that a bend in the valley, in which the glacier resides, and convergence with tributary glaciers, to be significant factors in the style of surge evolution. Their flow‐restrictive interference results in slow initial mass‐transfer and the growth of a surge front within 3–4 km of the terminus. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This article presents a review of current practice in estimating steric sea level change, focussed on the treatment of uncertainty. Steric sea level change is the contribution to the change in sea level arising from the dependence of density on temperature and salinity. It is a significant component of sea level rise and a reflection of changing ocean heat content. However, tracking these steric changes still remains a significant challenge for the scientific community. We review the importance of understanding the uncertainty in estimates of steric sea level change. Relevant concepts of uncertainty are discussed and illustrated with the example of observational uncertainty propagation from a single profile of temperature and salinity measurements to steric height. We summarise and discuss the recent literature on methodologies and techniques used to estimate steric sea level in the context of the treatment of uncertainty. Our conclusions are that progress in quantifying steric sea level uncertainty will benefit from: greater clarity and transparency in published discussions of uncertainty, including exploitation of international standards for quantifying and expressing uncertainty in measurement; and the development of community “recipes” for quantifying the error covariances in observations and from sparse sampling and for estimating and propagating uncertainty across spatio-temporal scales.  相似文献   

6.
青藏高原大部分湖泊近年来持续扩张,湖泊水位和水量明显增加.冰川消融是流域水量平衡和水循环的重要影响因素,直接导致湖泊水量变化.由于缺乏大范围的冰川质量平衡观测结果,青藏高原冰川消融对湖泊水量变化的影响仍存在较大争议.本文选择青藏高原内流区的色林错流域区(水系编号5Z2)作为研究对象,利用SRTM DEM和TanDEM-X双站InSAR数据,精确估算该流域三个主要冰川区(普若岗日、格拉丹东和西念青唐古拉)2000—2012年的冰川质量平衡,依次为:-0.020±0.030、-0.128±0.049、-0.143±0.032m·w.e.·a-1.并据此采用面积加权法准确推估出5Z2流域的冰川质量变化为:-0.166±0.021Gt·a-1.综合ICESat和Cryosat-2卫星测高数据,计算该流域2003—2012年湖泊水量变化速率(3.006±0.202Gt·a-1),并定量评估冰川质量变化对5Z2流域湖泊水量增加的贡献为:5.52%±1.07%,因此在青藏高原色林错流域区,冰川消融不是导致21世纪初期湖泊水位上升的主要因素.  相似文献   

7.
During the detailed excavations of ancient Caesarea, Israel, East Mediterranean, 64 coastal water wells have been examined that date from the early Roman period (with the oldest occurring in the 1st century AD), up to the end of the Crusader period (mid-13th century AD). The depths of these coastal water wells establish the position of the ancient water table and therefore the position of sea level for the first century AD up to 1300 AD. The connection between the coastal water table and changes in sea level has been established from modern observations in several wells on time scales of days and months and this is used to reconstruct sea level during historical time. The results indicate that during the Byzantine period, sea level at Caesarea was higher by about 30 cm than today. The Late Moslem and Crusader data shows greater fluctuations but the data sets are also much smaller than for the earlier periods. The consistency of the data indicates that the near-coastal well data from Caesarea provides a reliable indicator of sea-level change, with an accuracy of about 10-15 cm. These results are consistent with observations for earlier periods and, with comparisons to model-predicted glacio-hydro isostatic sea-level change, indicate that ocean volumes have been constant for much of the past 2000 years. The well data is also consistent with an absence of significant vertical tectonic movement of the coast at Caesarea over about 2000 years.  相似文献   

8.
Use of remote sensing for evapotranspiration monitoring over land surfaces   总被引:1,自引:0,他引:1  
Abstract

Monitoring evapotranspiration (ET) at large scales is important for assessing climate and anthropogenic effects on natural and agricultural ecosystems. This paper describes techniques used in evaluating ET with remote sensing, which is the only technology that can efficiently and economically provide regional and global coverage. Some of the empirical/statistical techniques have been used operationally with satellite data for computing daily ET at regional scales. The more complex numerical simulation models require detailed input parameters that may limit their application to regions containing a large database of soils and vegetation properties. Current efforts are being directed towards simplifying the parameter requirements of these models. Essentially all energy balance models rely on an estimate of the available energy (net radiation less soil heat flux). Net radiation is not easily determined from space, although progress is being made. Simplified approaches for estimating soil heat flux appear promising for operational applications. In addition, most ET models utilize remote sensing data in the shortwave and thermal wavelengths to measure key boundary conditions. Differences between the radiometric surface temperature and aerodynamic temperature can be significant and progress in incorporating this effect is evident. Atmospheric effects on optical data are significant, and optical sensors cannot see through clouds. This has led some to use microwave observations as a surrogate for optical data to provide estimates of surface moisture and surface temperature; preliminary results are encouraging. The approaches that appear most promising use surface temperature and vegetation indices or a time rate of change in surface temperature coupled to an atmospheric boundary layer model. For many of these models, differences with ET observations can be as low as 20% from hourly to daily time scales, approaching the level of uncertainty in the measurement of ET and contradicting some recent pessimistic conclusions concerning the utility of remotely sensed radiometric surface temperature for determining the surface energy balance.  相似文献   

9.
The ice flow velocity is a basic feature of glaciers and ice sheets. Measuring ice flow velocities is very important for estimating the mass balance of ice sheets in the Arctic and Antarctic. Traditional methods for measuring ice flow velocity include the use of stakes, snow pits and on-site geodetic GPS and remote sensing measurement methods. Geodetic GPS measurements have high accuracy, but geodetic GPS monitoring points only sparsely cover the Antarctic ice sheets. Moreover, the resolution and accuracy of ice flow velocities based on remote sensing measurements are low. Although the accuracy of the location data recorded by the navigation-grade GPS receivers embedded in short-period seismographs is not as good as that of geodetic GPS,the ice flow velocity can be accurately measured by these navigation-grade GPS data collected over a sufficiently long period. In this paper, navigation-grade GPS location data obtained by passive seismic observations during the 36 th Chinese National Antarctic Research Expedition were used to accurately track the movement characteristics of the ice sheet in the Larsemann Hills of East Antarctica and the Taishan Station area. The results showed that the ice sheet in the two study areas is basically moving northwestward with an average ice flow velocity of approximately 1 m mon-1. The results in the Taishan Station area are basically consistent with the geodetic GPS results, indicating that it is feasible to use the embedded GPS location data from shortperiod seismographs to track the movement characteristics of ice sheets. The ice flow characteristics in the Larsemann Hills are more complex. The measured ice flow velocities in the Larsemann Hills with a resolution of 200 m help to understand its characteristics. In summary, the ice flow velocities derived from GPS location data are of great significance for studying ice sheet dynamics and glacier mass balance and for evaluating the systematic errors caused by ice sheet movements in seismic imaging.  相似文献   

10.
Changes in mass contained by mountain glaciers and ice caps can modify the Earth’s hydrological cycle on multiple scales. On a global scale, the mass loss from glaciers contributes to sea-level rise. On regional and local scales, glacier meltwater is an important contributor to and modulator of river flow. In light of strongly accelerated worldwide glacier retreat, the associated glacier mass losses raise concerns over the sustainability of water supplies in many parts of the world. Here, we review recent attempts to quantify glacier mass changes and their effect on river runoff on regional and global scales. We find that glacier runoff is defined ambiguously in the literature, hampering direct comparison of findings on the importance of glacier contribution to runoff. Despite consensus on the hydrological implications to be expected from projected future warming, there is a pressing need for quantifying the associated regional-scale changes in glacier runoff and responses in different climate regimes.  相似文献   

11.
Various remote‐sensing methods are available to estimate soil moisture, but few address the fine spatial resolutions (e.g. 30‐m grid cells) and root‐zone depth requirements of agricultural and other similar applications. One approach that has been previously proposed to estimate fine‐resolution soil moisture is to first estimate the evaporative fraction from an energy balance that is inferred from optical and thermal remote‐sensing images [e.g. using the Remote Sensing of Evapotranspiration (ReSET) algorithm] and then estimate soil moisture through an empirical relationship to evaporative fraction. A similar approach has also been proposed to estimate the degree of saturation. The primary objective of this study is to evaluate these methods for estimating soil moisture and degree of saturation, particularly for a semi‐arid grassland with relatively dry conditions. Soil moisture was monitored at 28 field locations in south‐eastern Colorado with herbaceous vegetation during the summer months of 3 years. In situ soil moisture and degree of saturation observations are compared with estimates calculated from Landsat imagery using the ReSET algorithm. The in situ observations suggest that the empirical relationships with evaporative fraction that have been proposed in previous studies typically provide overestimates of soil moisture and degree of saturation in this region. However, calibrated functions produce estimates with an accuracy that may be adequate for various applications. The estimates produced by this approach are more reliable for degree of saturation than for soil moisture, and the method is more successful at identifying temporal variability than spatial variability in degree of saturation for this region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Streamflow simulation is often challenging in mountainous watersheds because of incomplete hydrological models, irregular topography, immeasurable snowpack or glacier, and low data resolution. In this study, a semi-distributed conceptual hydrological model (SWAT-Soil Water Assessment Tool) coupled with a glacier melting algorithm was applied to investigate the sensitivity of streamflow to climatic and glacial changes in the upstream Heihe River Basin. The glacier mass balance was calculated at daily time-step using a distributed temperature-index melting and accumulation algorithm embedded in the SWAT model. Specifically, the model was calibrated and validated using daily streamflow data measured at Yingluoxia Hydrological Station and decadal ice volume changes derived from survey maps and remote sensing images between 1960 and 2010. This study highlights the effects of glacier melting on streamflow and their future changes in the mountainous watersheds. We simulate the contribution of glacier melting to streamflow change under different scenarios of climate changes in terms of temperature and precipitation dynamics. The rising temperature positively contributed to streamflow due to the increase of snowmelt and glacier melting. The rising precipitation directly contributes to streamflow and it contributed more to streamflow than the rising temperature. The results show that glacial meltwater has contributed about 3.25 billion m3 to streamflow during 1960–2010. However, the depth of runoff within the watershed increased by about 2.3 mm due to the release of water from glacial storage to supply the intensified evapotranspiration and infiltration. The simulation results indicate that the glacier made about 8.9% contribution to streamflow in 2010. The research approach used in this study is feasible to estimate the glacial contribution to streamflow in other similar mountainous watersheds elsewhere.  相似文献   

13.
高光谱遥感技术在建 (构) 筑物震害识别中的应用   总被引:1,自引:1,他引:0  
高光谱遥感作为20世纪空间对地观测技术重大进步的产物,通过其较高的光谱分辨率,为人们提供了丰富的地球表面信息,在各个研究领域得到了快速发展和广泛应用,并取得了卓越的成果。尽管高光谱遥感具有独特的优势,但是针对其在震害评估领域中应用的相关研究较少。本文在总结高光谱遥感的特征、优势及不同领域应用现状的基础上,开展了其在震害评估领域的应用研究。基于ASD地物波谱仪获取的建(构)筑物光谱曲线构建可用于震害分析所需的光谱特征库,对比光谱库中地物曲线之间的差异后,发现高光谱遥感在震害评估领域中的应用是可行的,因不同震害地物之间的光谱特征曲线存在差异,依据这种差异可区分不同的震害信息,从而对震害遥感图像进行精细分类。  相似文献   

14.
The glacier is an important and stable water supply in Central Asia. Monitoring the change of glacier and understanding the impacts of glacier change on river discharge are critical to predict the downstream water availability change in future. Glacier changes were discussed and their impacts on river discharge were evaluated by hydrological modeling with a distributed hydrological model SWAT under two land use and land cover scenarios (1970 and 2007) in Tekes watershed, the most important source of water discharge to the Ili River. Compared to the glacier area of 1511 km2 in 1970s it decreased by 332 km2 in 2007, which resulted in the contribution the discharge from precipitation in the glacier area to the average annual discharge of the watershed changing from 9.8% in the period 1966–1975 to 7.8% in the period 2000–2008. In the month scale, with the decrease of glacier area, the distribution of the contribution of monthly discharge from precipitation in the glacier area to the total of the watershed changed from bimodal pattern to unimodal pattern. By linking a hydrological model to remote sensing image analysis and Chinese glacier inventories to determine glacier area change our approach in quantifying the impacts of glacier changes on hydrology at different scales, will provide quantitative information for stakeholders in making decisions for water resource management.  相似文献   

15.
Remote sensing technology has brought great convenience to our understanding of the macroscopic geological features since its inception. Especially, great progress has been made in manufacturing techniques of remote sensing platforms and sensors since the mid 20th century, and a huge number of global remote sensing data have been acquired. The quality of the data has been greatly improved based on the sensor's development. This article briefly reviews the processes of development of the remote sensing technology, elaborates on several satellites' parameters which have important significance for active tectonics interpretation, such as Landsat, SPOT, QuickBird, etc., and systematically reviews the progress in optical image interpretation made with the improvement of image resolution. The paper also briefly introduces the latest optical imaging correlation techniques, the detailed geomorphological mapping techniques based high-resolution satellite images, and the perspective of application of the remote sensing technology to active tectonics research.  相似文献   

16.
Vertical gravity gradient anomalies from the Gravity and steady-state Ocean Circulation Explorer (GOCE) DIR-3 model have been used to determine gravity anomalies in mid-west Greenland by using Least-Squares Collocation (LSC) and the Reduced Point Mass (RPM) method. The two methods give nearly identical results. However, compared to LSC, the RPM method needs less computational time as the number of equations to be solved in LSC equals the number of observations. The advantage of the LSC, however, is the acquired error estimates. The observation periods are winter 2009 and summer 2012. In order to enhance the accuracy of the calculated gravity anomalies, ground gravity data from West Greenland is used over locations where the gravity change resulting from ice mass changes is negligible, i.e. over solid rock. In the period considered, the gravity anomaly change due to changes in ice mass varies from ?5 mGal to 4 mGal. It is negative over the outlet glacier Jacobshavn Isbræ, where the mass loss corresponds to a gravity change of approximately ?4 mGal. When using only GOCE vertical gravity gradients, the error estimates range from 5 mGal at the coast to 17 mGal over the ice sheet. Introducing the ground gravity data from West Greenland in the prediction reduces the errors to range from 2 to 10 mGal.  相似文献   

17.
Channels change in response to natural or anthropogenic fluctuations in streamflow and/or sediment supply and measurements of channel change are critical to many river management applications. Whereas repeated field surveys are costly and time-consuming, remote sensing can be used to detect channel change at multiple temporal and spatial scales. Repeat images have been widely used to measure long-term channel change, but these measurements are only significant if the magnitude of change exceeds the uncertainty. Existing methods for characterizing uncertainty have two important limitations. First, while the use of a spatially variable image co-registration error avoids the assumption that errors are spatially uniform, this type of error, as originally formulated, can only be applied to linear channel adjustments, which provide less information on channel change than polygons of erosion and deposition. Second, previous methods use a level-of-detection (LoD) threshold to remove non-significant measurements, which is problematic because real changes that occurred but were smaller than the LoD threshold would be removed. In this study, we present a new method of quantifying uncertainty associated with channel change based on probabilistic, spatially varying estimates of co-registration error and digitization uncertainty that obviates a LoD threshold. The spatially distributed probabilistic (SDP) method can be applied to both linear channel adjustments and polygons of erosion and deposition, making this the first uncertainty method generalizable to all metrics of channel change. Using a case study from the Yampa River, Colorado, we show that the SDP method reduced the magnitude of uncertainty and enabled us to detect smaller channel changes as significant. Additionally, the distributional information provided by the SDP method allowed us to report the magnitude of channel change with an appropriate level of confidence in cases where a simple LoD approach yielded an indeterminate result. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
湖泊水情遥感研究进展   总被引:1,自引:0,他引:1  
宋春桥  詹鹏飞  马荣华 《湖泊科学》2020,32(5):1406-1420
湖泊作为最直接的淡水资源之一,在人类的生产、生活各方面都占据至关重要的地位.受到全球气候变化与人类活动的影响,湖泊正在发生急剧变化,因而有必要对其进行快速、准确的时空变化监测,从而为水资源管理与保护、未来气候变化预警提供依据.遥感技术的产生与发展为大范围、实时动态的湖泊变化监测提供了难得的契机,它克服了人类对湖泊实地考察的局限性.本文对现有国内外湖泊水情遥感监测技术与方法进行了综合梳理,主要综述了国内外在湖泊水域范围提取、湖泊水位提取、湖泊水量估算、流域水文过程等方面的遥感研究进展情况,重点总结了该领域近年来提出的新方法和新技术.最后,结合当前遥感技术的发展,对未来遥感在湖泊动态变化监测中的应用潜力和趋势进行了简要论述,并对多源遥感数据融合与云计算平台的结合在地表水体连续变化监测中的应用进行了展望.  相似文献   

19.
In this study, a new estimate of the contribution of glaciers and ice caps to the sea-level rise over the period 1800?C2005 is presented. We exploit the available information on changes in glacier length. Length records form the only direct evidence of glacier change that has potential global coverage before 1950. We calculate a globally representative signal from 349 glacier length records. By means of scaling, we deduce a global glacier volume signal, that is calibrated on the mass-balance and geodetic observations of the period 1950?C2005. We find that the glacier contribution to sea-level rise was 8.4 ± 2.1 cm for the period 1800?C2005 and 9.1 ± 2.3 cm for the period 1850?C2005.  相似文献   

20.
Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号