首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Space-borne observations reveal that 20–40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative–convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.  相似文献   

2.
The Arctic is subject to growing economic and political interest. Meanwhile, its climate and water systems are in rapid transformation. In this paper, we review and extend a set of studies on climate model results, hydro-climatic change, and hydrological monitoring systems. Results indicate that general circulation model (GCM) projections of drainage basin temperature and precipitation have improved between two model generations. However, some inaccuracies remain for precipitation projections. When considering geographical priorities for monitoring or adaptation efforts, our results indicate that future projections by GCMs and recent observations diverge regarding the basins where temperature and precipitation changes currently are the most pronounced and where they will be so in the future. Regarding late twentieth-century discharge changes in major Arctic rivers, data generally show excess of water relative to precipitation changes. This indicates a possible contribution to sea-level rise of river water that was previously stored in permafrost or groundwater. The river contribution to the increasing Arctic Ocean freshwater inflow is similar in magnitude to the separate contribution from glaciers, which underlines the importance of considering all possible sources of freshwater when assessing sea-level change. We further investigate monitoring systems and find a lack of harmonized water chemistry data, which limits the ability to understand the origin and transport of nutrients, carbon and sediment to the sea. To provide adequate information for research and policy, Arctic hydrological and hydrochemical monitoring needs to be extended, better integrated and made more accessible. Further water-focused data and modeling efforts are required to resolve the source of excess discharge in Arctic rivers. Finally, improvements in climate model parameterizations are needed, in particular for precipitation projections.  相似文献   

3.
4.
--This study examines two-dimensional large-scale atmospheric circulations that are centered over the equator. The influence of terms that contain the Coriolis parameter &gif1; is highlighted in a simple linear inviscid equatorial beta model. Two general types of oscillatory circulations are identified within the y-z plane. In a neutral or stably stratified atmosphere one circulation is expressed in terms of an analytic solution that contains Hermite polynomials, while a second solution is described in terms of a Bessel function. In the more traditional Hermite polynomial solution the influence of f' is small as suggested by scale analysis. Neutral stability provides the only exception. In contrast to these findings, the Bessel solution contains frequencies with semiannual periods that depend entirely on &gif2;. This solution describes cross-equatorial flow with a maximum meridional velocity at the equator. Consequently, this indicates that to model the atmosphere it is necessary to include in the model equations all terms containing f', since they influence oscillatory circulations that describe internal waves with periods that vary from a few days to semiannual.  相似文献   

5.
Dissolved oxygen (DO) concentrations influence many biogeochemical processes in groundwater systems but studies of temporal variability in DO are lacking. In this study, we used an optical DO probe to measure rapid changes in concentration due to plant‐groundwater interaction at an alluvial aquifer field site in Iowa. Diurnal DO concentrations were observed during mid‐ to late‐summer when soil conditions were dry, fluctuating approximately 0.2 to 0.3 mg/L on a daily basis. DO fluctuations in groundwater were out‐of‐phase with diurnal water table fluctuations, increasing during the day and decreasing at night. DO consumption at night is likely due to increased soil autotrophic and heterotrophic respiration linked with patterns of carbon supply derived from daytime photosynthetic activity, and consistent with available literature on diurnal soil respiration patterns. Although more work is needed to quantify specific processes, our results indicate the potential usefulness of the new optical DO technology to reveal insights regarding many ecohydrological processes.  相似文献   

6.
The modulation of radiative processes by changes in water vapor and cloudiness is at the origin of important feedbacks which control climate variability as well as climate changes. These feedbacks are especially active in the intertropical area, where it is possible to diagnose a combination of partially compensating positive and negative feedbacks. The characteristics and the strength of those feedbacks is closely associated with the dynamical regimes in which they develop. Reverse changes in dynamical patterns may cause a modulation of the radiative processes. A first approach to these problems is to distinguish between two ascending and subsiding circulation patterns. This bimodality of the circulation is well established in the tropical area, and favors the use of simplified models as an appropriate tool to carry out a first-order quantification of these processes. In particular, this combination of radiative and dynamical feedbacks characterizes the development of the monsoons and their variability. Simple conceptual models can thus serve to characterize some of the factors which will affect the intraseasonal variations of the monsoon.  相似文献   

7.
卫星遥感热红外辐射观测可给出连续可靠的全球地气热场变化的信息,监测方法和观测结果都具有十分明确的物理意义。将其应用于地震监测预报领域的研究和实践都已取得了一些进展,具有良好的发展前景。  相似文献   

8.
The Cloud Type product, developed by the Satellite Application Facility to support to nowcasting and very short-range forecasting (SAFNWC) of EUMETSAT and based on Météosat-8/SEVIRI, identifies cloud categories, and especially low and very low clouds which are first estimates of areas where fog is likely to occur. This cloud type is combined with precipitation information from radar data and with hourly diagnostic analyses of 2-metre relative humidity and 10-metre wind to elaborate an hourly analysis of fog probability. This analysis provides four levels of fog probability with a 3-kilometre horizontal resolution: No risk, low-level risk, medium-level risk and high-level risk. An evaluation of such fog probability analyses versus a one-year set of French hourly SYNOP reports shows encouraging results (potential of detection = 0.73 for low and medium and high-level risks), even if false alarm ratios remain high. Most of the non-detections occur at twilight and are due to satellite non-detections. Eventually, we show case studies that clearly illustrate the high potential of the method.  相似文献   

9.
10.
Model statements are presented for describing the oxygen concentration in dependence on various system quantities and five different shallow water bodies. A nonlinear model in the form of a polynomial and with parameter estimation by means of recursive regression proves suitable. It is a blackbox model in which the water temperature, the biomass of phytoplankton and zooplankton and the solar irradiation are the most important input quantities. The model applications to the five water bodies reach measures of determinateness of 0.6 … 0.74 and mean square deviations between the measured and calculated oxygen concentrations of 3 … 4 mg/l O2. Simulations of the model output by changed input data are discussed.  相似文献   

11.
12.
A few large distant seismic events of distinctly high signal frequency, designated HFT (high-frequency teleseismic) events, are observed yearly by the Apollo lunar seismic network. Their sources are located on or near the surface of the moon, leaving a large gap in seismic activity between the zones of HFT sources and deep moonquakes. No strong regularities are found in either their spatial or temporal distributions. Several working hypotheses for the identity of these sources have been advanced, but many characteristics of the events seem to favor a hypothesis that they are shallow moonquakes. Simultaneous observations of other lunar phenomena may eventually enable the determination of their true identity.  相似文献   

13.
Klimenko  D. Y. 《Water Resources》2020,47(4):641-650
Water Resources - The study considers the methods for evaluating the maximal possible daily storm rainfall (MPR) in the Middle Ural based on a combination of ground, aerological, satellite, and...  相似文献   

14.
Shallow plumbing systems for small-volume basaltic volcanoes   总被引:3,自引:3,他引:0  
Eruptive dynamics in basaltic volcanoes are controlled, in part, by the conduit geometry. However, uncertainties in conduit shape and dike-to-conduit transition geometry have limited our predictive capability for hazards assessments. We characterize the subvolcanic geometry of small-volume basaltic volcanoes (magmatic volatile-driven eruptions, 0.1 to 0.5 km3) based on a synthesis of field studies of five basaltic volcanoes exposed to varying degrees by erosion and exhibiting feeder dikes, conduits, and vent areas ≤250 m depth. Study areas include East Grants Ridge (New Mexico, USA), Basalt Ridge, East Basalt Ridge, Paiute Ridge, and Southeast Crater Flat (Nevada, USA). Basaltic feeder dikes 250 to 100 m deep have typical widths of 4–12 m, with smooth host-rock contacts (rhyolite tuff). At depths less than 100 m, heterogeneities in the host rock form preferential pathways for small dike splays and sills, resulting in a 30-m effective width at 50 m depth. The development of a complex conduit at depths less than 70 m is reflected in bifurcating dikes and brecciation and incorporation of the country rock. The overall zone of effect at depths less than 50 m is ≤110 m wide (220 m elongated along the feeder dike). Based on comparisons with theoretical conduit flow models, the width of the feeder dike at depths from 250 to 500 m is expected to range from 1 to 10 m and is expected to decrease to about 1–2 m at depths greater than 500 m. The flaring shape of the observed feeder systems is similar to results of theoretical modeling using lithostatic pressure-balanced flow conditions. Sizes of observed conduits differ from modeled dimensions by up to a factor of 10 in the shallow subsurface (<50 m depth), but at depths greater than 100 m the difference is a factor of 2 to 4. This difference is primarily due to the fact that observed eroded conduits record the superimposed effects of multiple eruptive events, while theoretical model results define dimensions necessary for a single, steady eruption phase. The complex details of magma-host rock interactions observed at the study areas (contact welding, brecciation, bifurcating dikes and sills, and stoping) represent the mechanisms by which the lithostatic pressure-balanced geometry is attained. The similarity in the normalized shapes of theoretical and observed conduits demonstrates the appropriateness of the pressure-balanced modeling approach, consistent with the conclusions of Wilson and Head (J Geophys Res 86:2971–3001, 1981) for this type of volcano.  相似文献   

15.
Ocean waves entering the near-shore zone undergo nonlinear and dispersive processes. This paper reviews nonlinear models, focusing on the so-called Serre equations. Techniques to overcome their limitations with respect to the phase speed are presented. Nonlinear behaviours are compared with theoretical results concerning the properties of Stokes waves. In addition, the models are tested against experiments concerning periodic wave transformation over a bar topography and of the shoaling of solitary waves on a beach.  相似文献   

16.
17.
18.
Knowledge of site‐specific contaminant transport processes is an essential requirement for performing various tasks concerning the protection and management of groundwater resources. However, prediction of their behavior is often difficult, especially in heterogeneous aquifers because of the lack of information about flow‐ and transport‐governing subsurface structures and parameters. Hence, stochastic approaches have been developed and frequently used. However, extensive modeling studies on sedimentary structures have shown that consideration of hydrogeological subunits and their distribution can be essential for transport modeling. A case study from the intensely investigated Lauswiesen site is used to demonstrate that more accurate predictions are possible with improved knowledge of deterministic structures. Results of this case study using direct‐push injection logging (DPIL) provide a more reliable characterization of hydraulic conductivity than sieve and flow meter data.  相似文献   

19.
20.
为了借助容易获取的地震相关因素间接预测地震震级,提出基于相关向量机(Relevance Vector Machine,RVM)方法的地震震级预测模型。通过样本学习建立地震震级与地震累积频度、累积释放能量、平均震级、b值、η值和相关区震级等6个主要影响因素之间的非线性映射关系,利用已知影响因素预测地震震级。结果表明:RVM模型预测结果均优于BP神经网络及SOM-BP神经网络预测结果;通过敏感因子分析比较各因素的敏感程度,b值和η值最为突出,在震级研究中应重点分析。综合分析,RVM模型具有精度高和离散性小等优点,对地震震级预测有较好的推广价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号