首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近四年全球海水质量变化及其时空特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文利用卫星重力、卫星测高和海洋温盐数据反演计算全球海水质量变化,并分析其时空变化特征.卫星重力数据利用2003年1月~2006年12月的GRACE月时变重力场球谐系数,同时考虑替换一阶项和C20项,并进行了相关误差滤波、高斯滤波和陆地水文信号泄漏改正,计算得到海洋等效水高变化;利用相同时间跨度的卫星测高数据和海洋温度、盐度水文观测数据,计算全球海平面变化和比容海平面变化,反演得到海水质量变化.反演的两种海水质量变化的年际变化特征一致性较好.三种数据得到的长期趋势变化,与1993~2003年的结果相比,可以看出,海水质量变化加速,并已成为全球海平面上升的主要因素.  相似文献   

2.
Meltwater from the Greenland Ice Sheet (GIS) has been a major contributor to sea level change in the recent past. Global and regional sea level variations caused by melting of the GIS are investigated with the finite element sea-ice ocean model (FESOM). We consider changes of local density (steric effects), mass inflow into the ocean, redistribution of mass, and gravitational effects. Five melting scenarios are simulated, where mass losses of 100, 200, 500, and 1000 Gt/yr are converted to a continuous volume flux that is homogeneously distributed along the coast of Greenland south of 75°N. In addition, a scenario of regional melt rates is calculated from daily ice melt characteristics. The global mean sea level modeled with FESOM increases by about 0.3 mm/yr if 100 Gt/yr of ice melts, which includes eustatic and steric sea level change. In the global mean the steric contribution is one order of magnitude smaller than the eustatic contribution. Regionally, especially in the North Atlantic, the steric contribution leads to strong deviations from the global mean sea level change. The modeled pattern mainly reflects the structure of temperature and salinity change in the upper ocean. Additionally, small steric variations occur due to local variability in the heat exchange between the atmosphere and the ocean. The mass loss has also affects on the gravitational attraction by the ice sheet, causing spatially varying sea level change mainly near the GIS, but also at greater distances. This effect is accounted for by using Green's functions.  相似文献   

3.
In this review article, we summarize observations of sea level variations, globally and regionally, during the 20th century and the last 2 decades. Over these periods, the global mean sea level rose at rates of 1.7 mm/yr and 3.2 mm/yr respectively, as a result of both increase of ocean thermal expansion and land ice loss. The regional sea level variations, however, have been dominated by the thermal expansion factor over the last decades even though other factors like ocean salinity or the solid Earth's response to the last deglaciation can have played a role. We also present examples of total local sea level variations that include the global mean rise, the regional variability and vertical crustal motions, focusing on the tropical Pacific islands. Finally we address the future evolution of the global mean sea level under on-going warming climate and the associated regional variability. Expected impacts of future sea level rise are briefly presented.  相似文献   

4.
海平面变化是全球气候系统变化的一个组成部分,是环境变化的重要指标,也会影响沿海区域及岛屿的生态环境甚至存亡.全球海平面变化由海水质量变化和比容海平面变化构成.海水质量变化主要是由于两极冰盖和高山区的冰川融化流入海洋所致;比容海平面变化是由海水的温度和盐度变化所引起的,其中温度变化是最主要的因素.本文介绍了海平面变化各种监测技术的发展过程,并对海平面变化的研究现状进行了总结.所有研究成果均表明,近100多年以来,全球海平面一直处于上升态势;近几十年以来,海平面呈现加快上升并且越来越快的趋势.目前仍然存在一些问题:人们还没有完全掌握海平面变化规律,对未来海平面变化预测有较大不确定性;深海缺乏实测数据;厄尔尼诺—南方涛动(ENSO)的变化规律以及对海平面的影响;GRACE陆地与海洋信号无法完全分离以及GRACE与GRACE-FO之间的一致性分析等.这些问题都需要进一步开展研究.  相似文献   

5.
Global mean sea level is a potentially sensitive indicator of climate change. Global warming will contribute to worldwide sea-level rise (SLR) from thermal expansion of ocean water, melting of mountain glaciers and polar ice sheets. A number of studies, mostly using tide-gauge data from the Permanent Service for Mean Sea Level, Bidston Observatory, England, have obtained rates of global SLR within the last 100 years that range between 0·3 and 3 mm yr?1, with most values concentrated between 1 and 2 mm yr?1. However, the reliability of these results has been questioned because of problems with data quality and physical processes that introduce a high level of spatial and temporal variability. Sources of uncertainty in the sea-level data include variations in winds, ocean currents, river runoff, vertical earth movements, and geographically uneven distribution of long-term records. Crustal motions introduce a major source of error. To a large extent, these can be filtered by employing palaeo-sea-level proxies, and geophysical modelling to remove glacio-isostatic changes. Ultimately, satellite geodesy will help resolve the inherent ambiguity between the land and ocean level changes recorded by tide gauges. Future sea level is expected to rise by ~ 1 m, with a ‘best-guess’ value of 48 cm by the year 2100. Such rates represent an acceleration of four to seven times over present rates. Local land subsidence could substantially increase the apparent SLR. For example, Louisiana is currently experiencing SLR trends nearly 10 times the global mean rate. These recently reduced SLR estimates are based on climate models that predict a zero to negative contribution to SLR from Antarctica. Most global climate models (GCMs) indicate an ice accumulation over Antarctica, because in a warmer world, precipitation will exceed ablation/snow-melt. However, the impacts of attritional processes, such as thinning of the ice shelves, have been downplayed according to some experts. Furthermore, not all climate models are in agreement. Opposite conclusions may be drawn from the results of other GCMs. In addition, the West Antarctic Ice Sheet is potentially subject to dynamic and volcanic instabilities that are difficult to predict. Because of the great uncertainty in SLR projections, careful monitoring of future sea-level trends by upgraded tide-gauge networks and satellite geodesy will become essential. Finally, because of the high spatial variability in crustal subsidence rates, wave climates and tidal regimes, it will be the set of local conditions (especially the relative sea-level rise), rather than a single global mean sea-level trend, that will determine each locality's vulnerability to future SLR.  相似文献   

6.
In this study, we propose to estimate the steric sea-level variations over a < 2-year period (April 2002 through December 2003) by combining global mean sea level (GMSL) based on Topex/Poseidon (T/P) altimetry with time-variable geoid averaged over the oceans, as observed by the GRACE (Gravity Recovery and Climate Experiment) satellite. In effect, altimetry-derived GMSL changes results from two contributions: Steric (thermal plus salinity) effects due to sea water density change and ocean mass change due to water exchange with atmosphere and continents. On the other hand, GRACE data over the oceans provide the ocean mass change component only. The paper first discusses the corrections to apply to the GRACE data. Then the steric contribution to the GMSL is estimated using GRACE and T/P data. Comparison with available thermal expansion based on in situ hydrographic data is performed. G. García: On leave from Space Geodesy Laboratory, Applied Mathematics Department, EPS, University of Alicante, Alicante, Spain.  相似文献   

7.
Global mean sea level is a sensitive factor of climate change. Global warming will contribute to worldwide sea‐level rise from thermal expansion of ocean water, melting of glaciers and polar ice. Consideration of global soil erosion, water vapor cycle, and hydraulic actions suggests that soil erosion is another important factor contributing to sea‐level rise in addition to global warming. Much terrestrial sediment flows into the rivers each year but cannot be replenished, resulting in land surface declines. Moreover, sediment flow into rivers and oceans contributes to rising sea level. Ecological protection measure was proposed to prevent rising sea levels caused by soil erosion. This commentary should be useful to attract attention on rising sea levels caused by soil erosion.  相似文献   

8.
《Journal of Geodynamics》2010,49(3-5):182-188
We investigate the contribution of atmospheric and its induced non-tidal oceanic loading effects on surface time-varying gravity and tilt measurements for several stations in Western Europe. The ocean response to pressure forcing can be modelled accordingly to the inverted barometer, i.e. assuming that air pressure variations are fully compensated by static sea height changes, or using ocean general circulation models. We validate two runs of the HUGO-m barotropic ocean model by comparing predicted sea surface height variations with hundred tide-gauge measurements along the European coasts. We then show that global surface pressure field, as well as a barotropic high-resolution ocean model forced by air pressure and winds allow in most cases a significant reduction of the variance of gravity residuals and, to a smaller extends tilt residuals.We finally show that precise gravity measurements with superconducting gravimeters allow the observation of large storm surges, occurring in the North Sea, even for inland stations. However, we also confirm that the continental hydrology contribution cannot be neglected. Thanks to their specific sensitivity feature, only tiltmeters closest to the coast can clearly detect the loading due to these storm surges.  相似文献   

9.
全球水质量迁移对海平面空间模式周年变化的影响   总被引:1,自引:2,他引:1       下载免费PDF全文
大气、陆地水和海洋之间的水质量迁移对海平面的影响一般假定为均匀薄层分布.但实际上,水质量负荷重新分布一方面会使地壳产生形变,另一方面会引起重力位势场变化(引力位和离心力位),这都会对海平面时空变化特征产生影响,两方面之和称为负荷自吸引效应(SAL).海洋模式模拟的时变洋底压力结果一般符合Boussinesq假设即体积守恒,忽略了大气、陆地水和海洋之间水质量交换的影响.本文基于海平面变化方程,联合陆地水模型、大气地表气压模型、海洋洋底压力模型和GRACE反演的冰川质量变化,详细讨论了2003-2010年SAL对海平面周年变化的影响.主要结论有:(1)SAL对全球海平面周年变化有显著影响,振幅在1.3~19 mm.其中近海岸和低纬度区域受影响较大.(2)在SAL引起的海平面周年振幅变化的因素中,陆地水储量变化因素最大,大气因素次之,非潮汐海洋影响最小.但非潮汐海洋对海平面周年相位空间变化的影响最为复杂.(3)通过与国际长期验潮站观测数据结果比较,在ECCO海洋模式估计的洋底压力结果中引入SAL,能多解释约5.3%观测信号方差.  相似文献   

10.
Sequence stratigraphic studies consider relative change in sea level (as regulated by eustasy, local tectonics and sediment supply) as the main builder of the stratigraphic record. Eustasy has generally been considered as a consequence of the growth and decay of continental ice sheets that would explain large, rapid changes in sea level, even during periods of relative global climatic warmth. However, such a mechanism has become increasingly difficult to envision during times of extreme global warmth such as the Turonian, when the equator-to-pole temperature gradient was very low and the presence of polar ice seems improbable. This paper investigates the timing and extent of sea level falls during the late Cenomanian through Turonian, especially the largest of those events, sequence boundary KTu4, which occurred during the middle to late Turonian peak of the Cretaceous hot greenhouse climate. We conclude that the amplitude of the widespread third-order sea level fall in the middle Turonian that is centered at ~91.8 Ma varies at different locations depending on the influence of dynamic topography on local tectonics and regional climatic conditions. Ice volume variations seem unlikely as a mechanism for controlling sea level at this time. However, this causal factor cannot be ruled out completely since Antarctic highlands (if they existed in the Late Cretaceous) could sequester enough water as ice to cause eustatic falls. To ascertain this requires detailed tomographic imaging of Antarctica, followed by geodynamic modeling, to determine whether high plateaus could have existed to accumulate ephemeral ice sheets. Other mechanisms for sea level change, such as transference between ground water (a small amplitude shorter time scale effect) and the ocean and entrainment and release of water from the mantle to the oceanic reservoir (a potentially large amplitude and longer time scale process), are intriguing and need to be explored further to prove their efficacy at third-order time scales.  相似文献   

11.
The impacts of the spatiotemporal variations of sea ice salinity on sea ice and ocean characteristics have not been studied in detail, as the existing climate models neglect or misrepresent this process. To address this issue, this paper formulated a parameterization with more realistic sea ice salinity budget, and examined the sensitivity of sea ice and ocean simulations to the ice salinity variations and associated salt flux into the ocean using a coupled global climate model. Results show that the inclus...  相似文献   

12.
The aim of this work is to compare the relative impact of land and sea surface anomalies on Sahel rainfall and to describe the associated anomalies in the atmospheric general circulation. This sensitivity study was done with the Météo-France climate model: ARPEGE. The sensitivity to land surface conditions consists of changes in the management of water and heat exchanges by vegetation cover and bare soil. The sensitivity to ocean surfaces consists in forcing the lower boundary of the model with worldwide composite sea surface temperature (SST) anomalies obtained from the difference between 4 dry Sahel years and 4 wet Sahel years observed since 1970. For each case, the spatiotemporal variability of the simulated rainfall anomaly and changes in the modelled tropical easterly jet (TEJ) and African easterly jet (AEJ) are discussed. The global changes in land surface evaporation have caused a rainfall deficit over the Sahel and over the Guinea Coast. No significant changes in the simulated TEJ and an enhancement of the AEJ are found; at the surface, the energy budget and the hydrological cycle are substantially modified. On the other hand, SST anomalies induce a negative rainfall anomaly over the Sahel and a positive rainfall anomaly to the south of this area. The rainfall deficit due to those anomalies is consistent with previous diagnostic and sensitivity studies. The TEJ is weaker and the AEJ is stronger than in the reference. The composite impact of SST and land surfaces anomalies is also analyzed: the simulated rainfall anomaly is similar to the observed mean African drought patterns. This work suggests that large-scale variations of surface conditions may have a substantial influence on Sahel rainfall and shows the importance of land surface parameterization in climate change modelling. In addition, it points out the interest in accurately considering the land and sea surfaces conditions in sensitivity studies on Sahel rainfall.  相似文献   

13.
In this paper, we first discuss the controversial result of the work by Cabanes et al. (Science 294:840–842, 2001), who suggested that the rate of past century sea level rise may have been overestimated, considering the limited and heterogeneous location of historical tide gauges and the high regional variability of thermal expansion which was supposed to dominate the observed sea level. If correct, this conclusion would have solved the problem raised by the IPCC third assessment report [Church et al, Cambridge University Press, Cambridge, pp 881, 2001], namely, the factor two difference between the 20th century observed sea level rise and the computed climatic contributions. However, recent investigations based on new ocean temperature data sets indicate that thermal expansion only explains part (about 0.4 mm/year) of the 1.8 mm/year observed sea level rise of the past few decades. In fact, the Cabanes et al.’s conclusion was incorrect due to a contamination of abnormally high ocean temperature data in the Gulf Stream area that led to an overestimate of thermal expansion in this region. In this paper, we also estimate thermal expansion over the last decade (1993–2003), using a new ocean temperature and salinity database. We compare our result with three other estimates, two being based on global gridded data sets, and one based on an approach similar to that developed here. It is found that the mean rate of thermosteric sea level rise over the past decade is 1.5±0.3 mm/year, i.e. 50% of the observed 3 mm/year by satellite altimetry. For both time spans, past few decades and last decade, a contribution of 1.4 mm/year is not explained by thermal expansion, thus needs to be of water mass origin. Direct estimates of land ice melt for the recent years account for about 1 mm/year sea level rise. Thus, at least for the last decade, we have moved closer to explaining the observed rate of sea level rise than the IPCC third assessment report.  相似文献   

14.
The TOPEX/POSEIDON (T/P) satellite altimeter mission has provided estimates of global mean sea level since late 1992 with a precision of approximately 4 mm. Over the first 3.5 years of the mission, T/P has observed a mean sea level rise of +0.5 mm/year when on-board estimates of the instrument drift are employed (and after correcting for a recently discovered software error), and +2.8 mm/year when an additional external tide gauge-based calibration estimate is used. A preliminary estimate of the error in the latter estimate is 1.3 mm/year, however this issue requires more research. Characterization of the observed sea level variations using Empirical Orthogonal Functions (EOFs) indicates that most of the mean sea level rise can be described by a single mode of the EOF expansion. The spatial characteristics of this mode suggests it is related to the El Nino Southern Oscillation (ENSO) phenomena. EOF analysis of sea level variations from the Semtner/Chervin ocean circulation model reveal a nearly identical mode, although its effect on mean sea level is unknown due to a constant volume constraint used in the model. EOF analysis of measured sea surface temperature (SST) variations also show a mode with similar temporal and spatial structure. However, the concentration of the observed sea level rise in this mode does not preclude the possibility that multiple phenomena have contributed to this mode, thus a link between the observed sea level rise and the ENSO phenomena is only weakly suggested. The absolute value of the observed mean sea level rise will depend on refinements currently being made in the instrument calibration techniques. In addition, the possibility of interannual and decadal variations of global mean sea level requires that a much longer time series of satellite altimetry be collected before variations caused by climate change can be unambiguously detected.  相似文献   

15.
Integrated Global Geodetic Observing System (IGGOS)—science rationale   总被引:1,自引:0,他引:1  
The International Association of Geodesy has decided to establish an Integrated Global Geodetic Observing System (IGGOS). The objective of IGGOS is to integrate in a well-defined global terrestrial reference frame the three fundamental pillars of geodesy, which are the determination of all variations of surface geometry of our planet (land, ice and ocean surfaces), of the irregularities in Earth rotation sub-divided in changes of nutation, polar motion and spin rate, and of the spatial and temporal variations of gravity and of the geoid. This integration will have to be done with a relative precision of 1 part-per-billion and be maintained stable in space and time over decades. IGGOS will quantify on a global scale surface changes, mass anomalies, mass transport and mass exchange and exchange in angular momentum in system Earth. It will be a novel and unique contribution to Earth system and Global Change research. It is intended to make IGGOS part of the Integrated Global Observing Strategy (IGOS).  相似文献   

16.
《Journal of Geodynamics》2006,41(4-5):357-362
The International Association of Geodesy has decided to establish an Integrated Global Geodetic Observing System (IGGOS). The objective of IGGOS is to integrate in a well-defined global terrestrial reference frame the three fundamental pillars of geodesy, which are the determination of all variations of surface geometry of our planet (land, ice and ocean surfaces), of the irregularities in Earth rotation sub-divided in changes of nutation, polar motion and spin rate, and of the spatial and temporal variations of gravity and of the geoid. This integration will have to be done with a relative precision of 1 part-per-billion and be maintained stable in space and time over decades. IGGOS will quantify on a global scale surface changes, mass anomalies, mass transport and mass exchange and exchange in angular momentum in system Earth. It will be a novel and unique contribution to Earth system and Global Change research. It is intended to make IGGOS part of the Integrated Global Observing Strategy (IGOS).  相似文献   

17.
What dominates sea level at the coast: a case study for the Gulf of Guinea   总被引:1,自引:0,他引:1  
Sea level variations and extreme events are a major threat for coastal zones. This threat is expected to worsen with time because low-lying coastal areas are expected to become more vulnerable to flooding and land loss as sea level rises in response to climate change. Sea level variations in the coastal ocean result from a combination of different processes that act at different spatial and temporal scales. In this study, the relative importance of processes causing coastal sea level variability at different time-scales is evaluated. Contributions from the altimetry-derived sea-level (including the sea level rise due to the ocean warming and land ice loss in response to climate change), dynamical atmospheric forcing induced sea level (surges), wave-induced run-up and set-up, and astronomical tides are estimated from observational datasets and reanalyses. As these processes impact the coast differently, evaluating their importance is essential for assessment of the local coastline vulnerability. A case study is developed in the Gulf of Guinea over the 1993–2012 period. The leading contributors to sea level variability off Cotonou differ depending on the time-scales considered. The trend is largely dominated by processes included in altimetric data and to a lesser extent by swell-waves run-up. The latter dominates interannual variations. Swell-waves run-up and tides dominate subannual variability. Extreme events are due to the conjunction of high tides and large swell run-up, exhibiting a clear seasonal cycle with more events in boreal summer and a trend mostly related to the trend in altimetric-derived sea-level.  相似文献   

18.
Through the use of fossil fuels as an energy source, mankind is slowly changing the constitution of the atmosphere. The emission of CO2 and other greenhouse gases changes the radiative properties of the earth/atmosphere system, and as a result climate is expected to become warmer. As a starting point for the sea-level rise scenario discussed here it is assumed that the globally-averaged increase of surface air temperatures will amount to 2 to 4°C in the second half of the next century (i.e. around 2085 AD). One of the consequences of this warming is an accelerated rise in sea level, caused by thermal expansion of ocean water and further retreat of mountain glaciers. The Greenland Ice Sheet will also decrease in size, but on the other hand, Antarctica is expected to grow slightly due to increased snowfall. Taken together, the projection for future sea level presented here suggest that by 2085 AD, global sea-level stand will be 28–66 cm higher than the present level, which implies a rate of sea-level rise of about 2 to 4 times that observed during the last 100 yr. Our scenario does not include a contribution resulting from the possible collapse of the West Antarctic Ice Sheet. If this collapse is indeed likely to occur after the major peripheral ice shelves have thinned considerably, the effects on sea level will be small in the coming 100 yr. First, the oceans surrounding Antarctica must have warmed sufficiently to reduce the winter sea-ice extent to allow circumpolar deep water to penetrate into the sub-shelf cavities, thus increasing basal melt rates on the ice shelves. Of course, on longer time scales, West Antarctica could become the major contributor to rising sea level.  相似文献   

19.
In this study, we have estimated the different sea level components (observed sea level from satellite altimetry, steric sea level from in situ hydrography—including Argo profiling floats, and ocean mass from Gravity Recovery and Climate Experiment; GRACE), in terms of regional and interannual variability, over 2002–2009. We compute the steric sea level using different temperature (and salinity) data sets processed by different groups (SCRIPPS, CLS, IPRC, and NOAA) and first focus on the regional variability in steric and altimetry-based sea level. In addition to El Nino–La Nina signatures, the observed and steric sea level data show clear impact of three successive Indian Ocean Dipoles in 2006, 2007, and 2008 in the Indian Ocean. We next study the spatial trend patterns in ocean mass signal by comparing GRACE observations over the oceans with observed minus steric sea level. While in some regions, reasonably good agreement is observed, discrepancy is noticed in some others due to still large regional trend errors in Argo and GRACE data, as well as to a possible (unknown) deep ocean contribution. In terms of global mean, interannual variability in altimetry-based minus steric sea level and GRACE-based ocean mass appear significantly correlated. However, large differences are reported when short-term trends are estimated (using both GRACE and Argo data). This prevents us to draw any clear conclusion on the sea level budget over the recent years from the comparison between altimetry-based, steric sea level, and GRACE-based ocean mass trends, nor does it not allow us to constrain the Glacial Isostatic Adjustment correction to apply to GRACE-based ocean mass term using this observational approach.  相似文献   

20.
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号