首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TOPEX/POSEIDON (T/P) satellite altimeter mission has provided estimates of global mean sea level since late 1992 with a precision of approximately 4 mm. Over the first 3.5 years of the mission, T/P has observed a mean sea level rise of +0.5 mm/year when on-board estimates of the instrument drift are employed (and after correcting for a recently discovered software error), and +2.8 mm/year when an additional external tide gauge-based calibration estimate is used. A preliminary estimate of the error in the latter estimate is 1.3 mm/year, however this issue requires more research. Characterization of the observed sea level variations using Empirical Orthogonal Functions (EOFs) indicates that most of the mean sea level rise can be described by a single mode of the EOF expansion. The spatial characteristics of this mode suggests it is related to the El Nino Southern Oscillation (ENSO) phenomena. EOF analysis of sea level variations from the Semtner/Chervin ocean circulation model reveal a nearly identical mode, although its effect on mean sea level is unknown due to a constant volume constraint used in the model. EOF analysis of measured sea surface temperature (SST) variations also show a mode with similar temporal and spatial structure. However, the concentration of the observed sea level rise in this mode does not preclude the possibility that multiple phenomena have contributed to this mode, thus a link between the observed sea level rise and the ENSO phenomena is only weakly suggested. The absolute value of the observed mean sea level rise will depend on refinements currently being made in the instrument calibration techniques. In addition, the possibility of interannual and decadal variations of global mean sea level requires that a much longer time series of satellite altimetry be collected before variations caused by climate change can be unambiguously detected.  相似文献   

2.
For coastal areas, given the large and growing concentration of population and economic activity, as well as the importance of coastal ecosystems, sea level rise is one of the most damaging aspects of the warming climate. Huge progress in quantifying the cause of sea level rise and closure of sea level budget for the period since the 1990s has been made mainly due to the development of the global observing system for sea level components and total sea levels. We suggest that a large spread (1.2 ± 0.2–1.9 ± 0.3 mm year?1) in estimates of sea level rise during the twentieth century from several reconstructions demonstrates the need for and importance of the rescue of historical observations from tide gauges, with a focus on the beginning of the twentieth century. Understanding the physical mechanisms contributing to sea level rise and controlling the variability of sea level over the past few 100 years are a challenging task. In this study, we provide an overview of the progress in understanding the cause of sea level rise during the twentieth century and highlight the main challenges facing the interdisciplinary sea level community in understanding the complex nature of sea level changes.  相似文献   

3.
Since the beginning of the 1990s, sea level is routinely measured using high-precision satellite altimetry. Over the past ~25 years, several groups worldwide involved in processing the satellite altimetry data regularly provide updates of sea level time series at global and regional scales. Here we present an ongoing effort supported by the European Space Agency (ESA) Climate Change Initiative Programme for improving the altimetry-based sea level products. Two main objectives characterize this enterprise: (1) to make use of ESA missions (ERS-1 and 2 and Envisat) in addition to the so-called ‘reference’ missions like TOPEX/Poseidon and the Jason series in the computation of the sea level time series, and (2) to improve all processing steps in order to meet the Global Climate Observing System (GCOS) accuracy requirements defined for a set of 50 Essential Climate Variables, sea level being one of them. We show that improved geophysical corrections, dedicated processing algorithms, reduction of instrumental bias and drifts, and careful linkage between missions led to improved sea level products. Regarding the long-term trend, the new global mean sea level record accuracy now approaches the GCOS requirements (of ~0.3 mm/year). Regional trend uncertainty has been reduced by a factor of ~2, but orbital and wet tropospheric corrections errors still prevent fully reaching the GCOS accuracy requirement. Similarly at the interannual time scale, the global mean sea level still displays 2–4 mm errors that are not yet fully understood. The recent launch of new altimetry missions (Sentinel-3, Jason-3) and the inclusion of data from currently flying missions (e.g., CryoSat, SARAL/AltiKa) may provide further improvements to this important climate record.  相似文献   

4.
5.
Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.  相似文献   

6.
7.
Geopotential values W of the mean equipotential surfaces representing the mean ocean topography were computed on the basis of four years (1993 - 1996) TOPEX/POSEIDON altimeter data: W = 62 636 854.10m 2 s –2 for the Pacific (P), W = 62 636 858.20m 2 s –2 for the Atlantic (A), W = 62 636 856.28m 2s–2 for the Indian (I) Oceans. The corresponding mean separations between the ocean levels were obtained as follows: A – P = – 42 cm, I– P = – 22 cm, I – A = 20 cm, the rms errors came out at about 0.3 cm. No sea surface topography model was used in the solution.  相似文献   

8.
Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data from the ORAP5 reanalysis, and Gravity Recovery And Climate Experiment (GRACE) space gravimetry data to estimate the steric and mass components. Regional sea-level trends seen in the altimetry map, in particular over the Beaufort Gyre and along the eastern coast of Greenland, are of halosteric origin. However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled climate models from the CMIP5 project are also used. The models lead us to the same conclusions concerning the halosteric origin of the trend patterns.  相似文献   

9.
Ice Sheets and Sea Level: Thinking Outside the Box   总被引:1,自引:0,他引:1  
Until quite recently, the mass balance (MB) of the great ice sheets of Greenland and Antarctica was poorly known and often treated as a residual in the budget of oceanic mass and sea level change. Recent developments in regional climate modelling and remote sensing, especially altimetry, gravimetry and InSAR feature tracking, have enabled us to specifically resolve the ice sheet mass balance components at a near-annual timescale. The results reveal significant mass losses for both ice sheets, caused by the acceleration of marine-terminating glaciers in southeast, west and northwest Greenland and coastal West Antarctica, and increased run-off in Greenland. At the same time, the data show that interannual variability is very significant, masking the underlying trends.  相似文献   

10.
Two of the most important topics in Sea Level Science are addressed in this paper. One is concerned with the evidence for the apparent acceleration in the rate of global sea level change between the nineteenth and twentieth centuries and, thereby, with the question of whether the twentieth century sea level rise was a consequence of an accelerated climate change of anthropogenic origin. An acceleration is indeed observed in both tide gauge and saltmarsh data at different locations around the world, yielding quadratic coefficients ??c?? of order 0.005 mm/year2, and with the most rapid changes of rate of sea level rise occurring around the end of the nineteenth century. The second topic refers to whether there is evidence that extreme sea levels have increased in recent decades at rates significantly different from those in mean levels. Recent results, which suggest that at most locations rates of change of extreme and mean sea levels are comparable, are presented. In addition, a short review is given of recent work on extreme sea levels by other authors. This body of work, which is focused primarily on Europe and the Mediterranean, also tends to support mean and extreme sea levels changing at similar rates at most locations.  相似文献   

11.
Onshore tsunami deposits resulting from the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes were described to evaluate the feasibility of tsunami deposits for inferring paleoseismic events along submarine faults. Tsunami deposits were divided into three types, based on their composition and aerial distribution: (A) deposits consisting only of floating materials, (B) locally distributed siliclastic deposits, and (C) widespread siliclastic deposits. The most widely distributed tsunami deposits consist of the first two types. Type C deposits are mostly limited to areas where the higher tsunami runup was observed. The scale of tsunami represented by vertical tsunami runup is an important factor controlling the volume of tsunami deposits. The thickest deposits, about 10 cm, occur behind coastal dunes. To produce thick siliclastic tsunami deposits, a suitable source area, such as sand bar or dune, must be available in addition to sufficient vertical tsunami runup. Estimation of the amounts of erosion and deposition indicates that tsunami deposits were derived from both onshore and shoreface regions. The composition and grain size of the tsunami deposits strongly reflect the nature of the sedimentary materials of their source area. Sedimentary structures of the tsunami deposits suggest both low and high flow régimes. Consequently, it seems very difficult to identify tsunami deposits based only on grain size distribution or sedimentary structure of a single site in ancient successions.  相似文献   

12.
13.
中国近海海平面变化特征分析   总被引:5,自引:1,他引:5       下载免费PDF全文
用经验正交函数分析方法,对中国近海14年多的测高海平面同化格网资料进行分析,给出了黄海、东海和南海各海平面变化主要主成分的空间变化和时间变化特征.用标准Morlet小波变换方法分析了各海区主成分时间变化序列的时频特征.分析结果表明,各主成分的空间分布特征与当地的海洋环流或洋流特征相对应.时频分析结果显示,中国近海海平面变化的显著周期主要为年周期信号.其次,黄海和东海还显示准2个月的非稳态信号,东海和南海具有较显著的半年周期信号,东海半年周期信号的能量不稳定.此外,在南海及台湾东部海域,首次发现存在较为显著的准540天周期信号,其动力学机制目前尚不明确.坎门和西沙验潮站资料的时频特征分析也验证了该信号的存在.最后本文给出了中国近海海平面在1993~2007年间的平均上升速率和其区域分布特征.  相似文献   

14.
There is a plethora of organizations concerned with the environmental consequences of human activities bordering the North Sea. However, the use, users and problems within this semi-enclosed area dictate the need for an organization to encourage co-operation between local municipalities. Because of this, KIMO (Kommunenes Internasjonale Miljøorganisasjon, Local Authorities' Environmental Organization) has been created. The paper discusses the role, origin and aims of KIMO in the context of pollution control and best environmental practices in the North Sea area. These aspects are considered within local, national and international frameworks.  相似文献   

15.
Naidenov  V. I.  Shveikina  V. I. 《Water Resources》2002,29(2):160-167
A new thermophysical mechanism of the Caspian Sea level variations is proposed. The mechanism incorporates the effect exerted on the dynamics of the water budget of the Caspian Sea by the nonlinear dependence of the evaporation rate on the moistening of the basin.  相似文献   

16.
Variations in the Caspian Sea Level in the Historic Epoch   总被引:1,自引:0,他引:1  
Reconstruction of variations in the Caspian Sea level is proposed based on the results of investigations of deposits in the Agrakhan sand bar and bays (or former bays) of the eastern sea coast. The history of sedimentation in particular regions is reconstructed by the radiocarbon dating. Generalized data on the age of deposits are used to construct the most likely temporal course of variations in the sea level within the historic epoch.  相似文献   

17.
We observed seiches at 55 ports in Japan facing the Japan Sea and obtained dominant periods from their maximum spectral amplitudes. These periods were mostly determined ranging from 10 to 40 minutes. They were compared with dominant periods of the 1993 Hokkaido Nansei-oki tsunami and the 1983 Nihonkai Chubu-oki tsunami at the same ports. As a result, relations of dominant periods between seiches and tsunamis are classified into three types. The first one is fundamental mode excitation, the second is higher mode excitation and the third is no excitation. Plotting the maximum spectral amplitude normalized at an epicentral distance of 50 km versus the ratio of the tsunami dominant period to the seiche dominant period, we obtained resonance curves having maxima at one. This fact shows a contribution of resonance to the amplification. Thus it is recognized that the dominant period of seiching is an important factor in interpreting amplification and resonance of tsunami.  相似文献   

18.
Becker  G. A.  Schulz  A. 《Ocean Dynamics》2000,51(11):5-79
Ocean Dynamics - Der vorliegende Atlas enthält statistische Bearbeitungen der seit dem Jahr 1969 wöchentlich analysierten Oberflächentemperaturkarten des Bundesamtes für...  相似文献   

19.
太湖流域海面-地面变化信息系统研究   总被引:6,自引:1,他引:6  
从生态脆弱性的一般属性出发,分析太湖生态脆弱性特征的形成和发展,太湖是我国典型的生态脆弱区,且有继续发展的可能趋势。迫切需要我们摆脱“鱼米之乡”,“人间天堂”等观念束缚,针对生态脆弱性特征,探索消除生态脆弱矛盾的对策措施。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号