首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or “kernel” depends on whether specific humidity S, relative humidity R, or ln(R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.  相似文献   

2.
An airborne downward-pointing water vapor lidar provides two-dimensional, simultaneous curtains of atmospheric backscatter and humidity along the flight track with high accuracy and spatial resolution. In order to improve the knowledge on the coupling between clouds, circulation and climate in the trade wind region, the DLR (Deutsches Zentrum für Luft- und Raumfahrt) water vapor lidar was operated on board the German research aircraft HALO during the NARVAL (Next Generation Aircraft Remote Sensing for Validation Studies) field experiment in December 2013. Out of the wealth of about 30 flight hours or 25,000 km of data over the Tropical Atlantic Ocean east of Barbados, three ~ 2-h-long, representative segments from different flights were selected. Analyses of Meteosat Second Generation images and dropsondes complement this case study. All observations indicate a high heterogeneity of the humidity in the lowest 4 km of the tropical troposphere, as well as of the depth of the cloud (1–2 km thick) and sub-cloud layer (~ 1 km thick). At the winter trade inversion with its strong humidity jump of up to 9 g/kg in water vapor mixing ratio, the mixing ratio variance can attain 9 (g/kg)2, while below it typically ranges between 1 and 3 (g/kg)2. Layer depths and partial water vapor columns within the layers vary by up to a factor of 2. This affects the total tropospheric water vapor column, amounting on average to 28 kg/m2, by up to 10 kg/m2 or 36%. The dominant scale of the variability is given by the extent of regions with higher-than-average humidity and lies between 300 and 600 km. The variability mainly stems from the alternation between dry regions and moisture lifted by convection. Occasionally, up to 100-km large dry regions are observed. In between, convection pushes the trade inversion upward, sharpening the vertical moisture gradient that is colocated with the trade inversion. In most of the water vapor profiles, this gradient is stronger than the one located at the top of the sub-cloud layer. Lidar observations in concert with models accurately reproducing the observed variability are expected to help evaluate the role these findings play for climate.  相似文献   

3.
Although great-progress has been made in the earth sciences,some fundamental problems of geodynamics remain unsolved.They are concerned with the whole earth as well as regional tectonics,such as the west Pacific and Qinghai-Xizhang plateau.The new generation of earth observation by space-based measurement will contribute to solving these problems of geodynamics.In this regard,some specific plans about application of these techniques are suggested in this paper.  相似文献   

4.
Airborne Geophysical Exploration for Ground Water   总被引:1,自引:0,他引:1  
  相似文献   

5.
Airborne very low frequency (VLF) data are routinely collected by national agencies and commercial companies together with other passive geophysical measurements of the static magnetic field and radiometric data. The purpose of this paper is to demonstrate that both standard three-component VLF and tensor VLF (TVLF) data contain a lot of useful quantitative and qualitative information about the electrical conductivity distribution in the upper few hundred meters of the crystalline basement. We first give a new derivation of the fundamental transfer functions (the tipper) used in the TVLF technique. We then show that the tipper can be estimated from simultaneous measurements of the wave magnetic fields from at least two transmitters with somewhat different frequencies, and present a simple model by which the maximum error introduced by the difference in frequencies can be found. Single transmitter scalar VLF maps emphasise those conductive structures that have dominant strikes in the direction of the transmitter. Multiple transmitter transfer functions are dependent only upon the underlying conductivity structure. Two dimensional structures can be quantitatively modelled by modern inversion methods developed originally for deep electromagnetic magnetotelluric (MT) soundings. In such cases three-component VLF measurements can be modelled easily upon appropriate rotation of the co-ordinate system to “strike” co-ordinates. Single frequency transfer functions (tippers) have real and imaginary parts that carry information on not only lateral contrasts in conductivity, as usually stated in text books, but, taken together, they provide a robust tool for determining the background conductivity level away from distinct conductors, and they can also be used to discriminate between deep and shallow conductors. Based upon simulations using multi-frequency data, it can be concluded that such a new development would dramatically increase the resolving power of airborne VLF measurements.  相似文献   

6.
The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.  相似文献   

7.
8.
An in situ instrumentation bundle was designed for inclusion in monitoring wells that were installed at the Wasatch Trailer Sales site in Layton, Utah, to evaluate in situ air sparging (IAS) and in-well aeration (IWA). Sensors for the bundle were selected based on laboratory evaluation of accuracy and precision, as well as consideration of size and cost. SenSym pressure transducers, Campbell Scientific Inc. (CSI) T-type thermocouples, and dissolved oxygen (DO) probes manufactured by Technalithics Inc. (Waco, Texas), were selected for each of the 27 saturated zone bundles. Each saturated zone bundle also included a stirring blade to mix water near the DO probe. A Figaro oxygen sensor was included in the vadose zone bundle. The monitoring wells were installed by direct push technique to minimize soil disruption and to ensure intimate contact between the 18 inch (46 cm) long screens and the soil. A data acquisition system, comprised of a CSI 21X data logger and four CSI AM416 multiplexers, was used to control the stirring blades and record signals from more than 70 in situ sensors. The instrumentation performed well during evaluation of IAS and IWA at the site. However, the SenSym pressure transducers were not adequately temperature compensated and will need to be replaced.  相似文献   

9.
10.
11.
In situ, airborne and satellite measurements are used to characterize the structure of water vapor in the lower tropical troposphere—below the height, \(z_*,\) of the triple-point isotherm, \(T_*.\) The measurements are evaluated in light of understanding of how lower-tropospheric water vapor influences clouds, convection and circulation, through both radiative and thermodynamic effects. Lower-tropospheric water vapor, which concentrates in the first few kilometers above the boundary layer, controls the radiative cooling profile of the boundary layer and lower troposphere. Elevated moist layers originating from a preferred level of convective detrainment induce a profile of radiative cooling that drives circulations which reinforce such features. A theory for this preferred level of cumulus termination is advanced, whereby the difference between \(T_*\) and the temperature at which primary ice forms gives a ‘first-mover advantage’ to glaciating cumulus convection, thereby concentrating the regions of the deepest convection and leading to more clouds and moisture near the triple point. A preferred level of convective detrainment near \(T_*\) implies relative humidity reversals below \(z*\) which are difficult to identify using retrievals from satellite-borne microwave and infrared sounders. Isotopologues retrievals provide a hint of such features and their ability to constrain the structure of the vertical humidity profile merits further study. Nonetheless, it will likely remain challenging to resolve dynamically important aspects of the vertical structure of water vapor from space using only passive sensors.  相似文献   

12.
13.

转换系数(K值)是GNSS气象学中影响GNSS可降水量(Precipitable Water Vapor, PWV)反演精度的关键参数之一.针对中国地区缺乏统一的高精度K值模型, 本文选取2018—2019年均匀分布的42个探空站资料, 分析K值与测站经纬度和高程之间的相关性, 利用2018年K值和多元线性拟合法, 分别建立基于测站纬度和年积日的Emardson-I模型和基于测站纬度、高程和年积日的Emardson-H模型, 并用2019年K值作为真值验证以上两模型的K值预报精度.研究结果表明: (1)K值与测站纬度和高程之间呈负相关, 相关系数分别为0.735和0.941, 而与测站经度的相关性较小; (2)Emardson-H模型预报的K值平均绝对误差(MAE)和均方根(RMS)均值分别为0.00150和0.00182, 均优于Emardson-I模型的0.00221和0.00255, 特别在高海拔地区表现更好; (3)基于Emardson-H模型的GNSS-PWV的MAE和RMS均值分别为0.226 mm和0.283 mm, 均优于Emardson-I模型(0.288 mm和0.360 mm), 在低海拔地区精度提高更为显著.因此, Emardson-H模型的精度优于Emardson-I模型, 在中国西部高海拔地区能取得更好的K值预报效果, 但就PWV反演精度而言, 在低海拔地区效果更好.Emardson模型以其无需实测气象参数的特点使其在地基GNSS气象学中具有更好的实时应用前景.

  相似文献   

14.
In a recent field study, the performance of four production wells was evaluated. The intake of a vertical turbine test pump was set below the top of the screened interval of the wells due to anticipated drawdown. Water level sounding tubes were welded to the well casing at various depths in each well. Drawdown data collected at various depths were used to evaluate the vertical head distribution in the wells under various pumping stresses. A direct relationship was observed between the head loss and the location of the pump intake in the production wells. A vertical head profile developed, suggesting that the location of the pump intake controlled the location of water production from the aquifer. The head loss in the wells observed during pumping was directly proportional to well discharge and annulus size between the well casing and the vertical turbine pump shaft. The pressure differences that developed in the wells created increased drawdown in water level sounding tubes installed deep in the wells compared to the total drawdown observed in the production wells. Certain implications should be considered based on the evaluation of the data obtained from this study. Because water management decisions are made using well test data, the quality of the data is crucial. In instances where well performance is evaluated using water level data collected from water level sounding tubes that are located close to a pump intake (in this case deep in the well), it should be recognized that well performance could be underestimated.  相似文献   

15.
16.
Soil vapor extraction (SVE) is effective for removing volatile organic compound (VOC) mass from the vadose zone and reducing the potential for vapor intrusion (VI) into overlying and surrounding buildings. However, the relationship between residual mass in the subsurface and VI is complex. Through a series of alternating extraction (SVE on) and rebound (SVE off) periods, this field study explored the relationship and aspects of SVE applicable to VI mitigation in a commercial/light-industrial setting. The primary objective was to determine if SVE could provide VI mitigation over a wide area encompassing multiple buildings, city streets, and subsurface utilities and eliminate the need for individual subslab depressurization systems. We determined that SVE effectively mitigates offsite VI by intercepting or diluting contaminant vapors that would otherwise enter buildings through foundation slabs. Data indicate a measurable (5 Pa) influence of SVE on subslab/indoor pressure differential may occur but is not essential for effective VI mitigation. Indoor air quality improvements were evident in buildings 100 to 200 feet away from SVE including those without a measurable reversal of differential pressure across the slab or substantial reductions in subslab VOC concentration. These cases also demonstrated mitigation effects across a four-lane avenue with subsurface utilities. These findings suggest that SVE affects distant VI entry points with little observable impact on differential pressures and without relying on subslab VOC concentration reductions.  相似文献   

17.
18.
19.
Magnetic separation has been recognized as an important property for the simple deployment of micro and sub‐microparticles into solution in the field of water treatment. Many materials with desirable properties for water decontamination are hindered due to the difficulty inherent in removing them from solution post‐treatment. By securing these materials to magnetic compounds, this important issue can be solved as removing active materials from wastewater requires only the application of a magnetic field. This review article presents and discusses many recent technologies, in the form of patents, which exploit the property of magnetic separation for advanced water treatment, including methods of adsorbing pollutants from wastewater and magnetically separating them, as well as methods of deploying active materials for the degradation of contaminants, then magnetically retrieving these catalysts. The requirement for advanced wastewater treatment methods becomes more essential as new, persistent contaminants arise as a result of pharmaceuticals, pesticides and industrial processes which cannot be addressed by traditional water treatment procedures. Magnetic separation promises to be a critical factor in these advanced methods, allowing the safe deployment of active materials which would otherwise be unusable, opening the gate to more efficient, economic and environmentally friendly water purification.  相似文献   

20.
In this study, we present a petroleum vapor intrusion (PVI) tool implemented in Microsoft® Excel® using Visual Basic for Applications and integrated within a graphical interface. The latter helps users easily visualize two‐dimensional soil gas concentration profiles and indoor concentrations as a function of site‐specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two‐dimensional explicit analytical model that combines steady‐state diffusion‐dominated vapor transport in a homogeneous soil with a piecewise first‐order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final PVI guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号