首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Group‐IIIE iron meteorites can be ordered into four categories reflecting increasing degrees of shock alteration. Weakly shocked samples (Armanty, Colonia Obrera, Coopertown, Porto Alegre, Rhine Villa, Staunton, and Tanokami Mountain) have haxonite within plessite, unrecrystallized kamacite grains containing Neumann lines or possessing the ? structure, and sulfide inclusions typically consisting of polycrystalline troilite with daubréelite exsolution lamellae. The only moderately shocked sample is NWA 4704, in which haxonite has been partially decomposed to graphite; the majority of the kamacite in NWA 4704 is recrystallized, and its sulfide inclusions were partly melted. Strongly shocked samples (Cachiyuyal, Kokstad, and Paloduro) contain graphite and no haxonite, suggesting that pre‐existing haxonite fully decomposed. Also present in these rocks are recrystallized kamacite and melted troilite. Residual heat from the impact caused annealing and recrystallization of kamacite as well as the decomposition of haxonite into graphite. Severely shocked samples (Aliskerovo and Willow Creek) have sulfide‐rich assemblages consisting of fragmental and subhedral daubréelite crystals, 1–4 vol% spidery troilite filaments, and 30–50 vol% low‐Ni kamacite grains, some of which contain up to 6.0 wt% Co; haxonite in these inclusions has fully decomposed to graphite. The wide range of impact effects in IIIE irons is attributed to one or more major collision(s) on the parent asteroid that affected different group members to different extents depending on their proximity to the impact point.  相似文献   

2.
Abstract— Carbon and nitrogen distributions in iron meteorites, their concentrations in various phases, and their isotopic compositions in certain phases were measured by secondary ion mass spectrometry (SIMS). Taenite (and its decomposition products) is the main carrier of C, except for IAB iron meteorites, where graphite and/or carbide (cohenite) may be the main carrier. Taenite is also the main carrier of N in most iron meteorites unless nitrides (carlsbergite CrN or roaldite (Fe, Ni)4N) are present. Carbon and N distributions in taenite are well correlated unless carbides and/or nitrides are exsolved. There seem to be three types of C and N distributions within taenite. (1) These elements are enriched at the center of taenite (convex type). (2) They are enriched at the edge of taenite (concave type). (3) They are enriched near but some distance away from the edge of taenite (complex type). The first case (1) is explained as equilibrium distribution of C and N in Fe-Ni alloy with M-shape Ni concentration profile. The second case (2) seems to be best explained as diffusion controlled C and N distributions. In the third case (3), the interior of taenite has been transformed to the α phase (kamacite or martensite). Carbon and N were expelled from the α phase and enriched near the inner border of the remaining γ phase. Such differences in the C and N distributions in taenite may reflect different cooling rates of iron meteorites. Nitrogen concentrations in taenite are quite high approaching 1 wt% in some iron meteorites. Nitride (carlsbergite and roaldite) is present in meteorites with high N concentrations in taenite, which suggests that the nitride was formed due to supersaturation of the metallic phases with N. The same tendency is generally observed for C (i.e., high C concentrations in taenite correlate with the presence of carbide and/or graphite). Concentrations of C and N in kamacite are generally below detection limits. Isotopic compositions of C and N in taenite can be measured with a precision of several permil. Isotopic analysis in kamacite in most iron meteorites is not possible because of the low concentrations. The C isotopic compositions seem to be somewhat fractionated among various phases, reflecting closure of C transport at low temperatures. A remarkable isotopic anomaly was observed for the Mundrabilla (IIICD anomalous) meteorite. Nitrogen isotopic compositions of taenite measured by SIMS agree very well with those of the bulk samples measured by conventional mass spectrometry.  相似文献   

3.
The mineralogy and bulk chemical compositions of three iron meteorites (Zhaoping, Xifu and Hami) recently found in China are reported here and are classified on the basis of their bulk chemical compositions. Zhaoping contains 93.4 mg/g Ni, 85.9 μg/g Ga, 418 μg/g Ge, 5.24 mg/g Co, 1.94 μg/g Ir, 0.774 μg/g W, and 1.62 μg/g Au and belongs to the low-Ni, low-Au subgroup of IAB. It is a coarse octahedrite and consists of kamacite, taenite, troilite, schreibersite and cohenite. The cohenite has entirely decomposed to graphite and low-Ni kamacite in our samples. Zhaoping contains some inclusions of Mn-free sarcopside which were rarely reported in IAB iron meteorites. Xifu has 74.1 mg/g Ni, 58.8gμg/g Ga, 150 μg/g Ge, and 0.913 μg/g W. Xifu is a member of group IIICD iron meteorite. Like most of IIICD irons, Xifu is a coarsest octahedrite with kamacite bandwidth larger than 3mm, and contains kamacite, taenite and schreibersite. Carbides and graphite are not found in the sample because of its being heterogeneous. Hami has 106 mg/g Ni, 5.36 mg/g Co and 0.922 μg/g Ir. We did not obtain the Ga and Ge contents in Hami because of their low concentrations and the limited precision of the INAA technique. Hami is an unclassified iron meteorite on the basis of the contents of other trace elements, structure and mineralogy. On mineralogy and structure, Hami resembles Rafruti, another unclassified iron meteorite.  相似文献   

4.
Abstract— The (compositionally) closely related iron meteorite groups IIIE and IIIAB were originally separated based on differences in kamacite bandwidth, the presence of carbides only in the IIIE group, and marginally resolvable differences on the Ga‐Ni and Ge‐Ni diagrams. A total of six IIIE iron meteorites have been analyzed for C and N using secondary ion mass spectrometry, and three of these have also been analyzed for N, Ne, and Ar by stepped combustion. We show that these groups cannot be resolved on the basis of N abundances or isotopic compositions but that they are marginally different in C‐isotopic composition and nitride occurrence. Cosmic‐ray exposure age distributions of the IIIE and IIIAB iron meteorites seem to be significantly different. There is a significant N‐isotopic range among the IIIE iron meteorites. A negative correlation between δ15N and N concentration suggests that the increase in s?15N resulted from diffusional loss of N.  相似文献   

5.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   

6.
Abstract— Cooling rate experiments were performed on P‐free Fe‐Ni alloys that are compositionally similar to ordinary chondrite metal to study the taenite ? taenite + kamacite reaction. The role of taenite grain boundaries and the effect of adding Co and S to Fe‐Ni alloys were investigated. In P‐free alloys, kamacite nucleates at taenite/taenite grain boundaries, taenite triple junctions, and taenite grain corners. Grain boundary diffusion enables growth of kamacite grain boundary precipitates into one of the parent taenite grains. Likely, grain boundary nucleation and grain boundary diffusion are the applicable mechanisms for the development of the microstructure of much of the metal in ordinary chondrites. No intragranular (matrix) kamacite precipitates are observed in P‐free Fe‐Ni alloys. The absence of intragranular kamacite indicates that P‐free, monocrystalline taenite particles will transform to martensite upon cooling. This transformation process could explain the metallography of zoneless plessite particles observed in H and L chondrites. In P‐bearing Fe‐Ni alloys and iron meteorites, kamacite precipitates can nucleate both on taenite grain boundaries and intragranularly as Widmanstätten kamacite plates. Therefore, P‐free chondritic metal and P‐bearing iron meteorite/pallasite metal are controlled by different chemical systems and different types of taenite transformation processes.  相似文献   

7.
Abstract— Metallographic cooling rates have been calculated for all five members of the iron meteorites group IIF using two different techniques. We have determined cooling rates of ~5 °C/Ma based on Ni profiles through the taenite rim enclosing kamacite spindles. Ni profiles through the kamacite phase are less precise cooling rate indicators, but suggest a cooling rate of ~1 °C/Ma within an order of magnitude at lower temperatures (360–400 °C). Based on the kamacite bandwidth and the Ni profiles through the taenite, we estimate that the kamacite nucleated 130–200 °C below the temperature predicted from the phase diagram. The size of and the distance between the large kamacite spindles is found to be consistent with the thermal history that we have determined on the basis of Ni profiles in kamacite and taenite. We find that previously published kamacite bandwidth cooling rates for the five group IIF members are most likely in error because of the presence of large schreibersite spindles in some kamacite spindles and because undercooling of kamacite was ignored. Contrary to previous workers we find that the metallographic cooling rates are consistent with cooling in a common core.  相似文献   

8.
Platinum group element (PGE) concentrations have been determined in situ in ordinary chondrite kamacite and taenite grains via laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). Results demonstrate that PGE concentrations in ordinary chondrite metal (kamacite and taenite) are similar among the three ordinary chondrite groups, in contrast to previous bulk metal studies in which PGE concentrations vary in the order H < L < LL. PGE concentrations are higher in taenite than kamacite, consistent with preferential PGE partitioning into taenite. PGE concentrations vary between and within metal grains, although average concentrations in kamacite broadly agree with results from bulk studies. The variability of PGE concentrations in metal decreases with increasing petrologic type; however, variability is still evident in most type six ordinary chondrites, suggesting that equilibration of PGEs does not occur between metal grains, but rather within individual metal grains via self‐diffusion during metamorphism. The constant average PGE concentrations within metal grains across different ordinary chondrite groups are consistent with the formation of metal via nebular condensation prior to the accretion of ordinary chondrite parent bodies. Post‐condensation effects, including heating during chondrule‐formation events, may have affected some element ratios, but have not significantly affected average metal PGE concentrations.  相似文献   

9.
Abstract— We studied the metallography of Fe‐Ni metal particles in 17 relatively unshocked ordinary chondrites and interpreted their microstructures using the results of P‐free, Fe‐Ni alloy cooling experiments (described in Reisener and Goldstein 2003). Two types of Fe‐Ni metal particles were observed in the chondrites: zoned taenite + kamacite particles and zoneless plessite particles, which lack systematic Ni zoning and consist of tetrataenite in a kamacite matrix. Both types of metal particles formed during metamorphism in a parent body from homogeneous, P‐poor taenite grains. The phase transformations during cooling from peak metamorphic temperatures were controlled by the presence or absence of grain boundaries in the taenite particles. Polycrystalline taenite particles transformed to zoned taenite + kamacite particles by kamacite nucleation at taenite/taenite grain boundaries during cooling. Monocrystalline taenite particles transformed to zoneless plessite particles by martensite formation and subsequent martensite decomposition to tetrataenite and kamacite during the same cooling process. The varying proportions of zoned taenite + kamacite particles and zoneless plessite particles in types 4–6 ordinary chondrites can be attributed to the conversion of polycrystalline taenite to monocrystalline taenite during metamorphism. Type 4 chondrites have no zoneless plessite particles because metamorphism was not intense enough to form monocrystalline taenite particles. Type 6 chondrites have larger and more abundant zoneless plessite particles than type 5 chondrites because intense metamorphism in type 6 chondrites generated more monocrystalline taenite particles. The distribution of zoneless plessite particles in ordinary chondrites is entirely consistent with our understanding of Fe‐Ni alloy phase transformations during cooling. The distribution cannot be explained by hot accretion‐autometamorphism, post‐metamorphic brecciation, or shock processing.  相似文献   

10.
Abstract– The microstructures of six reheated iron meteorites—two IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb’s Mill (Blake’s Iron), and Babb’s Mill (Troost’s Iron)—were characterized using scanning and transmission electron microscopy, electron‐probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700–750 °C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstätten pattern. The other four, which show no trace of their original microstructure, were heated above 600–700 °C and recrystallized to form 10–20 μm wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close‐packed planes aligned. Formation of homogeneous 20 μm wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 °C or approximately 1 h at 1300 °C. All six irons contain approximately 5–10 μm wide taenite grains with internal microprecipitates of kamacite and nanometer‐scale M‐shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100–10,000 yr. Un‐decomposed high‐Ni martensite (α2) in taenite—the first occurrence in irons—appears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M‐shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock‐hatched kamacite, recrystallization, microprecipitates of taenite, and shock‐melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main cause of reheating. Cooling over years rather than hours precludes shock during the impacts that exposed the irons to cosmic rays. If the reheated irons that we studied are representative, the IVA irons may have been shocked soon after they cooled below 200 °C at 4.5 Gyr in an impact that created a rubblepile asteroid with fragments from diverse depths. The primary cooling rates of the IVA irons and the proposed early history are remarkably consistent with the Pb‐Pb ages of troilite inclusions in two IVA irons including the oldest known differentiated meteorite ( Blichert‐Toft et al. 2010 ).  相似文献   

11.
K.L. Rasmussen 《Icarus》1981,45(3):564-576
Measurements of Ni concentration profiles of a large number of neighboring kamacite and taenite lamellae in the iron meteorite Cape York (IIIA) have revealed that the kamacite plates have nucleated in a taenite of varying Ni concentration, equal to or above the bulk Ni concentration of the meteorite. This variation indicates that the kamacite plates nucleated stepwise (i.e., independently) during cooling through a certain temperature interval, rather than simultaneously after more or less undercooling of the meteorite. The latter is assumed in most previous cooling rate determinations (e.g., Moren and Goldstein, 1978). In this paper the measured local bulk Ni concentrations are used in the computer simulation of the evolution of the Widmannstaetten pattern in order to calculate the cooling rate of the meteorite. The cooling rate obtained for Cape York is 1.3°K/my. In most previous work, a correlation is seen between the resulting taenite width and the cooling rate in one and the same meteorite. No such correlation is seen using the present method.  相似文献   

12.
The Agoudal IIAB iron meteorite exhibits only kamacite grains (~6 mm across) without any taenite. The kamacite is homogeneously enriched with numerous rhabdite inclusions of different size, shape, and composition. In some kamacite domains, this appears frosty due to micron‐scale rhabdite inclusions (~5 to 100 μm) of moderate to high Ni content (~26 to 40 wt%). In addition, all the kamacite grains in matrix are marked with a prominent linear crack formed during an atmospheric break‐up event and subsequently oxidized. This feature, also defined by trails of lowest Ni‐bearing (mean Ni: 23 wt%) mm‐scale rhabdite plates (fractured and oxidized) could be a trace of a pre‐existing γ–α interface. Agoudal experienced a very slow rate of primary cooling ~4 °C Ma?1 estimated from the binary plots of true rhabdite width against corresponding Ni wt% and the computed cooling rate curves after Randich and Goldstein (1978). Chemically, Agoudal iron (Ga: 54 ppm; Ge: 140 ppm; Ir: 0.03 ppm) resembles the Ainsworth iron, the coarsest octahedrite of the IIAB group. Agoudal contains multiple sets of Neumann bands that are formed in space and time at different scales and densities due to multiple impacts with shock magnitude up to 130 kb. Signatures of recrystallization due to postshock low temperature mild reheating at about 400 °C are also locally present.  相似文献   

13.
Abstract– The single‐piece iron meteorite Javorje, with a mass of 4920 g, is the heaviest and largest meteorite found in the territory of Slovenia. The meteorite Javorje is a medium octahedrite with kamacite bandwidth of 0.85 ± 0.26 mm. The bulk composition of Ni (7.83 wt%), Co (0.48 wt%) and trace elements Ga (25 μg/g), Ge (47 μg/g), Ir (7.6 μg/g), As (5.8 μg/g), Au (0.47 μg/g), and Pt (13.4 μg/g) indicates that the meteorite Javorje belongs to the chemical group IIIAB. Mineral and bulk chemical compositions are consistent with other reported group IIIAB meteorites. The presence of numerous rhabdites, carlsbergite, sparse troilite, and chromite and abundance of daubréelites are in accordance with low‐Ni and low‐P IIIAB iron meteorites. The severely weathered surface and secondary weathering products in the interior of the meteorite suggest its high terrestrial age.  相似文献   

14.
Abstract— We studied the texture, mineralogy, and bulk chemical composition of Dhofar 007, a basaltic achondrite. Dhofar 007 is a polymict breccia that is mostly composed of coarse‐grained granular (CG) clasts with a minor amount of xenolithic components, such as a fragment of Mg‐rich pyroxene. The coarse‐grained, relict gabbroic texture, mineral chemistry, and bulk chemical data of the coarse‐grained clast indicate that the CG clasts were originally a cumulate rock crystallized in a crust of the parent body. However, in contrast to monomict eucrites, the siderophile elements are highly enriched and could have been introduced by impact events. Dhofar 007 appears to have experienced a two‐stage postcrystallization thermal history: rapid cooling at high temperatures and slow cooling at lower temperatures. The presence of pigeonite with closely spaced, fine augite lamellae suggests that this rock was cooled rapidly from higher temperatures (>0.5 °C/yr at ˜1000 °C) than typical cumulate eucrites. However, the presence of the cloudy zone in taenite and the Ni profile across the kamacite‐taenite boundaries indicates that the cooling rate was very slow at lower temperatures (˜1–10 °C/Myr at <600–700 °C). The slow cooling rate is comparable to those in mesosiderites and pallasites. The two‐stage thermal history and the relative abundance of siderophile elements similar to those for metallic portions in mesosiderites suggest that Dhofar 007 is a large inclusion of mesosiderite. However, we cannot rule out a possibility that Dhofar 007 is an anomalous eucrite.  相似文献   

15.
We report the first combined atom‐probe tomography (APT) and transmission electron microscopy (TEM) study of a kamacite–tetrataenite (K–T) interface region within an iron meteorite, Bristol (IVA). Ten APT nanotips were prepared from the K–T interface with focused ion beam scanning electron microscopy (FIB‐SEM) and then studied using TEM followed by APT. Near the K‐T interface, we found 3.8 ± 0.5 wt% Ni in kamacite and 53.4 ± 0.5 wt% Ni in tetrataenite. High‐Ni precipitate regions of the cloudy zone (CZ) have 50.4 ± 0.8 wt% Ni. A region near the CZ and martensite interface has <10 nm sized Ni‐rich precipitates with 38.4 ± 0.7 wt% Ni present within a low‐Ni matrix having 25.5 ± 0.6 wt% Ni. We found that Cu is predominantly concentrated in tetrataenite, whereas Co, P, and Cr are concentrated in kamacite. Phosphorus is preferentially concentrated along the K‐T interface. This study is the first precise measurement of the phase composition at high spatial resolution and in 3‐D of the K‐T interface region in a IVA iron meteorite and furthers our knowledge of the phase composition changes in a fast‐cooled iron meteorite below 400 °C. We demonstrate that APT in conjunction with TEM is a useful approach to study the major, minor, and trace elemental composition of nanoscale features within fast‐cooled iron meteorites.  相似文献   

16.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

17.
Fossil iron meteorites are extremely rare in the geological sedimentary record. The paleometeorite described here is the first such finding at the Cretaceous‐Paleogene (K‐Pg) boundary. In the boundary clay from the outcrop at the Lechówka quarry (Poland), fragments of the paleometeorite were found in the bottom part of the host layer. The fragments of meteorite (2–6 mm in size) and meteoritic dust are metallic‐gray in color and have a total weight of 1.8181 g. Geochemical and petrographic analyses of the meteorite from Lechówka reveal the presence of Ni‐rich minerals with a total Ni amount of 2–3 wt%. The identified minerals are taenite, kamacite, schreibersite, Ni‐rich magnetite, and Ni‐rich goethite. No relicts of silicates or chromites were found. The investigated paleometeorite apparently represents an independent fall and does not seem to be derived from the K‐Pg impactor. The high degree of weathering did not permit the chemical classification of the meteorite fragments. However, the recognized mineral inventory, lack of silicates, and their pseudomorphs and texture may indicate that the meteorite remains were an iron meteorite.  相似文献   

18.
Abstract— We have measured the size of the high‐Ni particles in the cloudy zone and the width of the outer taenite rim in eight low shocked and eight moderately to heavily shocked IVA irons using a transmission electron microscope (TEM). Thin sections for TEM analysis were produced by a focused ion beam instrument. Use of the TEM allowed us to avoid potential artifacts which may be introduced during specimen preparation for SEM analysis of high Ni particles <30 nm in size and to identify microchemical and microstructural changes due to the effects of shock induced reheating. No cloudy zone was observed in five of the eight moderately to highly shocked (>13 GPa) IVA irons that were examined in the TEM. Shock induced reheating has allowed for diffusion from 20 nm to 400 nm across kamacite/taenite boundaries, recrystallization of kamacite, and the formation, in Jamestown, of taenite grain boundaries. In the eleven IVA irons with cloudy zone microstructures, the size of the high‐Ni particles in the cloudy zone increases directly with increasing bulk Ni content. Our data and the inverse correlation between cooling rate and high‐Ni particle size for irons and stony‐irons show that IVA cooling rates at 350‐200 °C are inversely correlated with bulk Ni concentration and vary by a factor of about 15. This cooling rate variation is incompatible with cooling in a metallic core that was insulated with a silicate mantle, but is compatible with cooling in a metallic body of radius 150 ± 50 km. The widths of the tetrataenite regions next to the cloudy zone correlate directly with high‐Ni particle size providing another method to measure low temperature cooling rates.  相似文献   

19.
Abstract— Plessite is a mixture of body‐centered cubic (bcc) kamacite (α), face‐centered cubic (fcc) taenite (γ), and/or ordered FeNi‐tetrataenite (γ“) phases and is observed in the metal of iron, stony‐iron, and chondritic meteorites. The formation of plessite was studied by measuring the orientation of the bcc and fcc phases over large regions of plessite using electron backscatter diffraction (EBSD) analysis in five ataxites, the Carlton IAB‐IIICD iron, and zoneless plessite metal in the Kernouve H6 chondrite. The EBSD results show that there are a number of different orientations of the bcc kamacite phase in the plessite microstructure. These orientations reflect the reaction path γ (fcc)→α2 (bcc) in which the α2 phase forms during cooling below the martensite start temperature, Ms, on the close‐packed planes of the parent fcc phase according to one or more of the established orientation relationships (Kurdjumov‐Sachs, Nishiyama‐Wasserman, and Greninger‐Troiano) for the fcc to bcc transformation. The EBSD results also show that the orientation of the taenite and/or tetrataenite regions at the interfaces of prior α2 (martensite) laths, is the same as that of the single crystal parent taenite γ phase of the meteorite. Therefore, the parent taenite γ was retained at the interfaces of martensite laths during cooling after the formation of martensite. The formation of plessite is described by the reaction γ→α2 + γ→α + γ. This reaction is inconsistent with the decomposition of martensite laths to form γ phase as described by the reaction γ→α2→α + γ, which is the classical mechanism proposed by previous investigators. The varying orientations of the fine exsolved taenite and/or tetrataenite within decomposed martensite laths, however, are a response to the decomposition of α2 (martensite) laths at low temperature and are formed by the reaction α2→α + γ.  相似文献   

20.
We report the results of a study of the Fukang pallasite that includes measurements of bulk composition, mineral chemistry, mineral structure, and petrology. Fukang is a Main‐group pallasite that consists of semiangular olivine grains (Fo 86.3) embedded in an Fe‐Ni matrix with 9–10 wt% Ni and low‐Ir (45 ppb). Olivine grains sometimes occur in large clusters up to 11 cm across. The Fe‐Ni phase is primarily kamacite with accessory taenite and plessite. Minor phases include schreibersite, chromite, merrillite, troilite, and low‐Ca pyroxene. We describe a variety of silicate inclusions enclosed in olivine that contain phases rarely or not previously reported in Main‐group pallasites, including clinopyroxene (augite), tridymite, K‐rich felsic glass, and an unknown Ca‐Cr silicate. Pressure constraints determined from tridymite (<0.4 GPa), two‐pyroxene barometry (0.39 ± 0.07 GPa), and geophysical calculations that assume pallasite formation at the core–mantle boundary (CMB), provide an upper estimate on the size of the Main‐group parent body from which Fukang originated. We conclude that Fukang originated at the CMB of a large differentiated planetesimal 400–680 km in radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号