首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare earth element (REE) geochemistry and mineralogy have been studied in the weathered crusts derived from the Early Yanshanian (Jurassic) biotite granites of Dabu and Dingnan, as well as in the Indosinian (Permian) muscovite–biotite granite of Aigao in southern Jiangxi province, China, and the weathered crusts and clay sediments on biotite granites in the Sanyo belt, SW Japan, that is, Okayama, Tanakami, and Naegi areas. In all of the weathered crusts, biotite and plagioclase commonly tend to decrease toward the upper part of the profile, whereas kaolinite and residual quartz and K‐feldspar increase. The weathered crusts of the Dingnan granites and some Naegi granites, which are characterized by the enrichment in light REE (LREE) in C horizons, have higher total REE (ΣREE) content than the parent REE‐enriched granites. Weathering of LREE‐bearing apatite and fluorocarbonates in the Dingnan granites and allanite and apatite in some Naegi granites may account for the leaching of LREE at the B horizons. The leached LREE must result in subsequent enrichment of LREE in the C horizons. The enrichment is probably associated with mainly adsorption onto kaolinite and partly formation of possible secondary LREE‐bearing minerals. In Japan it was found that REE mineralization occurs not in the weathered granitic crusts but in reworked clay sediments, especially kaolinite‐rich layers, derived mainly from the weathering materials of REE‐enriched granitic rocks. The clay sediments are more enriched in LREE, which likely adsorbed onto kaolinite. Concentration of heavy REE within almost all the weathered crusts and clay sediments, however, may reflect mainly residual REE‐bearing minerals such as zircon, which originated in the parent granitic rocks. The findings of the present study support the three processes for fractionation of the REE during weathering: (i) selective leaching of rocks containing both stable and unstable REE‐bearing minerals; (ii) adsorption onto clay minerals; and (iii) presence of possible secondary LREE‐bearing minerals.  相似文献   

2.
南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比   总被引:15,自引:3,他引:15  
南岭地区的钨锡和稀土矿床都与花岗岩类有直接成因联系,但二者的成矿作用有许多不同之处.钨锡是典型的热液成矿,而稀土则主要形成于风化作用.随着花岗岩类的分异演化,岩石中的W、Sn等元素含量逐渐增加,因此钨锡等矿床主要与高度分异演化的晚阶段小岩体有关;但是稀土的表现与钨锡不同,由于花岗岩类的分异演化导致稀土栽体黑云母及许多副矿物的减少,因此稀土元素含量在晚阶段岩体中反而降低.赣南的五里亭-大吉山岩体、桂东北的花山-姑婆山岩体等提供了很好的范例.因此,南岭地区与风化壳型稀土矿床有关的岩石主要有:印支期准铝质花岗岩,燕山期A型花岗岩,燕山中-晚期黑云母二长花岗岩等.  相似文献   

3.
The Eocene (ca. 55–38 Ma) Bear Lodge alkaline complex in the northern Black Hills region of northeastern Wyoming (USA) is host to stockwork-style carbonatite dikes and veins with high concentrations of rare earth elements (e.g., La: 4140–21000 ppm, Ce: 9220–35800 ppm, Nd: 4800–13900 ppm). The central carbonatite dike swarm is characterized by zones of variable REE content, with peripheral zones enriched in HREE including yttrium. The principle REE-bearing phases in unoxidized carbonatite are ancylite and carbocernaite, with subordinate monazite, fluorapatite, burbankite, and Ca-REE fluorocarbonates. In oxidized carbonatite, REE are hosted primarily by Ca-REE fluorocarbonates (bastnäsite, parisite, synchysite, and mixed varieties), with lesser REE phosphates (rhabdophane and monazite), fluorapatite, and cerianite. REE abundances were substantially upgraded (e.g., La: 54500–66800 ppm, Ce: 11500–92100 ppm, Nd: 4740–31200 ppm) in carbonatite that was altered by oxidizing hydrothermal and supergene processes. Vertical, near surface increases in REE concentrations correlate with replacement of REE(±Sr,Ca,Na,Ba) carbonate minerals by Ca-REE fluorocarbonate minerals, dissolution of matrix calcite, development of Fe- and Mn-rich gossan, crystallization of cerianite and accompanying negative Ce anomalies in secondary fluorocarbonates and phosphates, and increasing δ18O values. These vertical changes demonstrate the importance of oxidizing meteoric water during the most recent modifications to the carbonatite stockwork. Scanning electron microscopy, energy dispersive spectroscopy, and electron probe microanalysis were used to investigate variations in mineral chemistry controlling the lateral complex-wide geochemical heterogeneity. HREE-enrichment in some peripheral zones can be attributed to an increase in the abundance of secondary REE phosphates (rhabdophane group, monazite, and fluorapatite), while HREE-enrichment in other zones is a result of HREE substitution in the otherwise LREE-selective fluorocarbonate minerals. Microprobe analyses show that HREE substitution is most pronounced in Ca-rich fluorocarbonates (parisite, synchysite, and mixed syntaxial varieties). Peripheral, late-stage HREE-enrichment is attributed to: 1) fractionation during early crystallization of LREE selective minerals, such as ancylite, carbocernaite, and Ca-REE fluorocarbonates in the central Bull Hill dike swarm, 2) REE liberated during breakdown of primary calcite and apatite with higher HREE/LREE ratios, and 3) differential transport of REE in fluids with higher PO43−/CO32− and F/CO32− ratios, leading to phosphate and pseudomorphic fluorocarbonate mineralization. Supergene weathering processes were important at the stratigraphically highest peripheral REE occurrence, which consists of fine, acicular monazite, jarosite, rutile/pseudorutile, barite, and plumbopyrochlore, an assemblage mineralogically similar to carbonatite laterites in tropical regions.  相似文献   

4.
The spatial distribution and mineralogical association of uranium in 30 samples of a 1,000 meter core from the Redstone (NH) Quarry were examined with fission track techniques, backscattered electron imaging, and energy dispersive X-ray spectrometry with the following results for the Conway and Mount Osceola granites: (1) Uranium occurs in microcracks sealed with siderite and/or with Ca+ RE fluorocarbonate minerals; the uranium contents of siderite and the RE fluorocarbonates are 1 to 30 ppm and 500–1,500 ppm, respectively. (2) Siderite and to a lesser extent RE fluorocarbonate minerals occur as replacement minerals of amphibole and biotite; the RE fluorocarbonates are the main alteration minerals of allanite. (3) The degree of alteration and the extent of uranium redistribution are greater in samples with major uraniferous microcracks. (4) The contents of Ca and Mn are approximately constant for siderite in sealed cracks throughout the Conway and Mount Osceola granites for the entire section penetrated by the corehole, approximately 700 meters. — From these observations, we conclude that an extensive set of fractures throughout a significant volume of the Mount Osceola and Conway granties were the conduits through which hydrothermal fluids containing CO2, uranium, and REs circulated. Microcracks facilitated fluid-rock interactions resulting in alteration and uranium redistribution. Certain primary uraniferous accessory minerals, i.e., allanite and ilmenorutile may have been the source for at least part of the uranium and REs that now occur in secondary minerals in these granites.  相似文献   

5.
云南省澜沧县地处临沧花岗岩的中南段,在其境内发现多地与花岗岩风化壳有关的离子吸附型稀土矿床。文章通过对该区晚三叠世黑云母二长花岗岩风化壳全风化层的剖面及钻孔样品分析,对赋存于花岗岩风化壳离子吸附型稀土矿床的成矿地质地球化学特征进行研究,探讨其关键成矿过程并总结地形地貌与风化壳和矿体露头的关系。研究表明,黑云母二长花岗岩风化壳分层特征明显,离子吸附型稀土矿体规模及形态严格受风化壳发育程度及微地貌控制;花岗岩风化壳全风化层稀土元素配分曲线呈右倾平滑的浅“W”型,轻稀土元素的分异程度强于重稀土元素;除Ce元素外,轻稀土元素的浸出率略高于重稀土元素;矿石类型为以轻稀土元素为主、中重稀土元素配分齐全的混合型稀土矿。通过厘定离子吸附型稀土矿床的关键成矿过程,文章发现内应力、渗透能力、风化程度、黏土矿物含量在风化壳剖面中由上至下变化特征综合决定了稀土矿体主要定位于风化壳全风化层。  相似文献   

6.
Ion-adsorption REE deposits associated with clay minerals are the main global HREE producer. The majority of these deposits are formed by the weathering of granites in South China, but whether there is any fundamental difference between the granites in and outside South China is still unclear. Besides, an effective evaluation system of granite mineralization potential is urgently needed for HREE exploration.To answer this question, we compiled a global granite geochemical dataset from within (n = 1932) and outside (n = 6109) South China, together with a dataset of representative REE deposits in South China (n = 128). The geochemical comparation shows that the South China granites share similar REE contents with those of many granites from places outside South China. Such similarity has also been found between REE ore-related and ore-barren granites in South China. This shows that granites from outside South China could also have ore-forming potential. Warm humid climate and quasi-equalized crustal state promote chemical weathering to continuously leach REEs and store them in the weathering crust. The enrichment ratio (Rx) can be used to quantify the climatic effect between orebodies and parent rocks. The calculated average Enrichment Ratios (Rx) of LREE- and HREE-rich deposits are 2.41 and 2.68, respectively. Sufficient REE content in granite is the prerequisite for mineralization, and we propose that the combination of the minimum REE + Y (172 and 108 ppm in LREE- and HREE-rich parent rocks, respectively) and REE oxide ratio (1.32) can reveal the granite metallogenic potential. Together with the suitable tropical and temperate climate area with ion-adsorption REE deposits, we further identified certain regions with high REE mineralization potential outside South China to assist future exploration.  相似文献   

7.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   

8.
富氟花岗岩体系岩浆流体内稀土元素演化规律的实验研究   总被引:2,自引:0,他引:2  
高温高压实验结果表明,随着富氟过铝花岗质岩浆分离结晶作用的进行,在与熔体相共存的流体相中,REE浓度呈有规律地变化:当温度从750℃下降至接近固相线(570℃)时,流体相中REE浓度逐渐降低,这一规律与REE在稀有金属花岗岩体上部岩相带中REE含量贫化的地质事实相一致。在富氟过铝质花岗岩体系中,REE易于分散进入某些造岩矿物(如黑云母等)和副矿物(如萤石和锡石等)中,从而不利于REE形成热液矿床。  相似文献   

9.
Samples of three Tien Shan granites were analyzed for the U content of their constituent minerals. Three minerals with high U content are allanite (450-500 ppm), monazite (1,000-1,300 ppm) and zircon (1, 600-1,860 ppm), but significant amounts, from 20 to 40 ppm occur in the biotite, muscovite, amphibole, apatite, ilmenite, sphene, and chlorite. From 30 to 60 percent of the total U in the granites could be leached from the minerals. The unleachable portion of U may enter the crystal lattices of minerals by isomorphism or endocryptism. --M. Russell.  相似文献   

10.
A magmatic gap from 1.82 to 1.76 b.y. in the Lake Superior region represents the transition from synorogenic calc-alkaline igneous activity of the Penokean Orogeny to anorogenic potassic granophyric granite and ignimbrite. This paper deals with the petrogenetic evolution of 1.76 b.y. granites which represent a major change in source material and conceivably tectonic setting. Although perhaps related to a termination of the Penokean Orogeny by melting of a tectonically thickened crust during collision, these post-Penokean granites may represent the initial appearance of anorogenic, potentially rift-related igneous activity that was widespread throughout North America during late Precambrian time.These post-Penokean granites are too iron-rich and Al-poor to be considered calc-alkaline, a compositional feature shared with most anorogenic igneous activity of continental regions. Within this suite in central and northern Wisconsin, regional differences in composition indicate at least two different granite magma types: one a metaluminous suite of biotite and biotite-hornblende granite and a peraluminous suite of two-mica granite. The systematic compositional differences (Al, Fe/Mg, Ba/Sr, REE) in the two magma suites are likely the result of small differences in residue mineralogy and/or source composition. In general, the degree of fusion was small (10%) and probably of relatively young Penokean material. Both suites have a range of composition due to feldspar dominated fractional crystallization. Removal of the accessory minerals apatite, zircon, and allanite resulted in the REE depletion with differentiation of the two-mica granites.The granites intruded into the upper levels of the crust, and the appearance of primary celadonitic muscovite and subsolvus alkali feldspars (silicic members only) in the two mica granites indicate crystallization at depths of 10–11 km. The biotite granites contain both hypersolvus and subsolvus members and are intruded at depths less than 6 km with the more shallow members generating major volumes of ignimbrite. As a marked departure from the characteristics of most anorogenic granites, these melts crystallized at fairly oxidizing conditions (higher for the two-mica suite) as reflected in the composition of biotite, predominance of magnetite over ilmenite, and early appearance of the Fe-Ti oxides in the crystallization sequence.  相似文献   

11.
位于江南造山带东部的江西朱溪钨矿,是近年发现的一个超大型钨矿床,其矿体主要由矽卡岩型白钨矿组成,产于 燕山期侵入岩与碳酸盐岩接触带的矽卡岩或矽卡岩化大理岩中。为了更好地认识朱溪钨矿的特征和成因,文章采集了花岗 岩和矽卡岩的钻孔样品,进行了岩石学、矿物学、岩石地球化学和同位素年代学的分析。研究表明,朱溪矿区的黑云母花 岗岩具有高硅、富碱、高分异的特征,属于钙碱性、过铝质花岗岩,微量元素中Rb,U,Ta等元素富集,Ba,Nb,Sr和Ti 等元素亏损。稀土元素总量偏低,轻稀土相对富集。矽卡岩矿物的电子探针成分结果表明,其中石榴子石主要为钙铝榴 石-钙铁榴石端元组分;单斜辉石以透辉石-钙铁辉石系列为主。与白钨矿密切共生的矽卡岩矿物中,萤石、符山石、磷灰 石和榍石等富氟的矿物大量出现,表明朱溪钨矿成矿流体为富氟体系,这有利于钨的运移和沉淀。白钨矿REE配分曲线及 Mo含量变化所反映的流体性质表明,朱溪钨矿在矽卡岩阶段,总的矿化环境则由氧化向还原环境变化。利用朱溪含矿矽卡 岩中榍石进行了原位LA-ICP-MS U-Pb定年,206Pb/238U加权平均年龄为153±2 Ma,结果显示朱溪钨矿的成矿时代为晚侏罗 世,属燕山期岩浆活动后的产物。  相似文献   

12.
高玲  闫峻  李全忠  谢建成 《地质论评》2022,68(5):1820-1838
皖南地区花岗岩风化壳中稀土元素普遍富集,局部已成为矿床,其中,郎溪县姚村岩体风化壳富集程度较高。LA- ICP- MS锆石U- Pb定年表明,姚村花岗岩体的形成年龄为127. 9±1. 4 Ma,属于皖南地区燕山期晚期岩浆作用的产物。风化壳可细分为残坡积层(A)、强半风化层(C1)、过渡层(C2)、弱半风化层(C3)和基岩(D) 5层。稀土总量在纵向剖面上呈“波浪式”分布,各层稀土分布型式表现出对原岩的继承性。风化壳稀土配分型式与基岩一致, 富集LREE,轻重稀土分馏明显\[(La/Yb)N=15. 6\],但总含量明显更高。基岩∑REE为338×10-6,半风化层∑REE最高达642×10-6,富集约两倍。风化壳物质由风化残余主矿物(石英、钾长石、斜长石、黑云母)、黏土矿物(高岭石、埃洛石、伊利石、三水铝石等)和副矿物(锆石、磷灰石、榍石等)等组成。黏土矿物以伊利石含量最高,指示风化壳发育不成熟。REE与埃洛石含量明显正相关,与其他黏土矿物关系不明显。(含)稀土矿物(尤其是榍石)对风化壳中稀土元素的贡献量超过 50%,其次为斜长石,是风化壳中REE的重要来源。  相似文献   

13.
高玲  闫峻  李全忠  谢建成 《地质论评》2022,68(3):2022062013-2022062013
皖南地区花岗岩风化壳中稀土元素普遍富集,局部已成为矿床,其中,郎溪县姚村岩体风化壳富集程度较高。LA- ICP- MS锆石U- Pb定年表明,姚村花岗岩体的形成年龄为127.9±1.4 Ma,属于皖南地区燕山期晚期岩浆作用的产物。风化壳可细分为残坡积层(A)、强半风化层(C1)、过渡层(C2)、弱风化层(C3)和基岩(D)五层。稀土总量在纵向剖面上呈“波浪式”分布,各层稀土分布型式表现出对原岩的继承性。风化壳稀土配分型式与基岩一致, 富集LREE,轻重稀土分馏明显(La/Yb)N=15.6),但总含量明显更高。基岩∑REE为338×10-6,半风化层∑REE最高达642×10-6,富集约两倍。风化壳物质由风化残余主矿物(石英、钾长石、斜长石、黑云母)、黏土矿物(高岭石、埃洛石、伊利石、三水铝石等)和副矿物(锆石、磷灰石、榍石等)等组成。黏土矿物以伊利石含量最高,指示风化壳发育不成熟。REE与埃洛石含量明显正相关,与其他黏土矿物关系不明显。(含)稀土矿物(尤其是榍石)对风化壳中稀土元素的贡献量超过百分之五十,其次为斜长石,是风化壳中REE的重要来源。  相似文献   

14.
Ion adsorption rare earth element (REE) deposits in southern China are the exclusive source of heavy REEs (HREEs) in the world, and this HREE‐enriched character of the deposits is inherited from the REE compositions of the underlying granitic rocks. Such HREE‐enriched rocks form from heavy fractionation of reduced granitic magmas. We explore why reduced granitic magmas are enriched in HREEs during the fractionation, based on the REE geochemistry of granitic rocks and abundance of REEs in their constituent minerals in the southwestern Japan arc of Cretaceous to Paleogene age. The compilation of the whole rock geochemistry and REE compositions of the granitic rocks of the Sanin (oxidized), Sanyo (reduced) and Ryoke (reduced) belts in the southwestern Japan arc indicates that: (i) light REEs (LREEs) decease with fractionation of the granitoids in the Sanin belt but this trend is not clear in the granitoids in the Sanyo belt and LREEs rather increase in the Ryoke granitoids; (ii) Eu decreases with fractionation in all the belts; and (iii) HREEs slightly, but steadily decrease in the Sanin belt but enrich significantly in the Sanyo and Ryoke belts with fractionation. Analytical results of REE concentrations by scanning electron microscope with energy dispersive X‐ray spectroscope and laser ablation‐inductively coupled plasma mass spectrometer in the constituent minerals in a granodiorite sample from the Sanin belt show a moderate concentration of REEs in hornblende (577 ppm) in addition to high concentrations in allanite (~20 %), britholite (~30 %), primary titanite (8922 ppm), apatite (4062 ppm), and zircon (1693 ppm). Because primary titanite and allanite are commonly present in the oxidized granitoids but not in the reduced ones, the REE depletion in the fractionated, oxidized granites is attributed to the crystallization of these minerals. In contrast, scarcity of these minerals in the reduced granitoids enriches REEs, in particular HREEs in the fractionated magmas, which finally precipitate REEs in the granites and pegmatites. Both positive, but different correlation ratios between the Nb and Dy concentrations in the granitoids of the Sanin and Sanyo‐Ryoke belts suggest that columbite–pyrochlore‐group and fergusonite‐group minerals are the major HREE host in the oxidized and reduced granites, respectively.  相似文献   

15.
张传福 《湖南地质》1994,13(1):17-21
风化壳淋积型稀土矿床,在湘南地区普遍发育。具有分布面广、厚度大、品位较富、浸取率高的特点。在风化壳分层中,矿体呈似层状、透镜状赋存于上部、中部,顶部及下部无矿。矿化原岩(花岗岩)含稀土总量0.06%以上才具找矿价值。  相似文献   

16.
滇西临沧花岗岩中段岩性主体为黑云母二长花岗岩,是离子吸附型稀土矿的天然成矿母岩。研究区湿热的气候使得在地势相对平缓的中山地区形成巨厚的花岗岩风化带,依据风化程度由地表至基岩依次分为腐殖土层、亚黏土层、全风化层、半风化层、弱风化层和新鲜基岩。全风化层是本区离子吸附型稀土矿的主要赋矿层位,该层位元素地球化学特征显示,经过风化后稀土元素发生了富集和分馏,稀土矿化是以轻稀土为主。轻稀土又以La和Ce这两种元素为主。依据本区不同地貌类型建立了倾缓的山脊、平缓的山顶和低缓的山丘3种离子吸附型稀土矿成矿模式。  相似文献   

17.
王凯怡 《地质科学》1980,15(1):83-86
白云鄂博花岗岩的稀土配分型式 该花岗岩出露于白云鄂博矿的东部和东南部。侵入于白云鄂博群中,引起围岩不同程度和不同性质的蚀变。在地质构造位置上处于内蒙台背斜向内蒙褶皱带过渡的的中间地带,多沿东西方向分布,受断裂控制。  相似文献   

18.
华南是我国重要的战略性矿产资源基地,以花岗岩相关的稀有和稀土金属成矿作用而举世瞩目。其中,铌的成矿作用一般与过铝质高分异花岗岩有关,稀土元素则随岩浆演化程度增强而富集程度降低,而江西铁木里含黑云母碱长花岗岩体同时富集铌和稀土元素,矿化组合极具特色。本文在详细的矿物岩相学研究基础上,利用电子探针、飞秒激光电感耦合等离子质谱对铌和稀土矿物进行了矿物地球化学分析,借此对铁木里碱长花岗岩中铌和稀土元素的富集机制进行探讨。铁木里岩体由肉红色含黑云母碱长花岗岩(r-G)和灰白色含黑云母碱长花岗岩(g-G)组成,发育暗色包体。r-G中的铌矿物主要为岩浆期形成的铌铁金红石,稀土矿物包括岩浆期形成的硅钛铈矿、独居石、磷灰石和热液期形成的独居石和氟碳(钙)铈矿。g-G中的铌矿物包括岩浆期形成的铌铁金红石和热液期形成的铌铁金红石、易解石、铌铁矿,稀土矿物包括岩浆期磷灰石和热液期磷灰石、独居石、氟碳(钙)铈矿。暗色包体为岩浆混合成因,内含磷灰石、独居石和零星的硅钛铈矿、金红石。矿物组合特征显示,铁木里碱长花岗岩中的铌和稀土元素经过了岩浆和热液两个时期的富集。应用金红石、磷灰石、绿泥石等矿物成分特征约束了岩浆-...  相似文献   

19.
Tungsten minerals (scheelite and wolframite) from two genetic types of granitoids show significant differences in REE distribution, probably due to different material sources and origins. Tungsten minerals in granite porphyry of the crust-mantle source are relatively high in ΣREE(1884ppm on average). Σ Ce is rich relative to Σ Y and Σ Ce/ΣY is relatively high (>1). The chondrite-normalized REE distribution patterns are characterized by a group of rightward-inclined curves. Tungsten minerals in quartz veins intruding the granites of crust origin have lower ΣREE (335 ppm on average). ΣY is rich relative to ΣCe and ΣCe/ΣY is relatively low (<1). The chondrite-normalized REE distribution patterns are characterized by a group of leftward-inclined curves. So the REE distribution patterns can be used to discriminate the sources of rock-and ore-forming materials and the genetic types of W deposits so as to provide clues to ore prospecting.  相似文献   

20.
赣南新元古代变质岩稀土矿物及其地球化学特征   总被引:1,自引:2,他引:1  
近年来赣南地区首次报道了变质岩离子吸附型稀土矿床的发现,为离子吸附型稀土的找矿提供了新思路。赣南地区新元古代变质岩大面积分布,风化壳也广泛发育。文章对30件稀土元素含量(300×10~(-6))高的变质岩矿物样品进行了详细的电子探针分析,旨在查明赣南新元古代不同类型变质岩中的稀土矿物种类及特征,探讨其成因、对全岩稀土元素含量的贡献以及离子吸附型稀土元素的成矿潜力。研究表明,区域上变质岩可大致分为6类,分别是变质凝灰岩类、板岩类、千枚岩类、片岩类、变砂岩类和变粒岩类,不同类型变质岩的稀土矿物组合不同,除了普遍存在的、难风化的独居石、磷钇矿和锆石外,部分岩性中出现易风化的褐帘石、含稀土元素绿泥石和含稀土元素金红石,及表生的水磷酸盐和磷铝酸盐等矿物。这些富稀土矿物贡献了全岩中大部分稀土元素,且部分矿物成因与后期流体作用相关,为成矿提供了良好的条件。文章总结分析认为,赣南地区广泛分布的变质岩中,片岩类、变砂岩类和变质凝灰岩类均具有相对易风化的稀土矿物组合,尤其变质凝灰岩类和变砂岩类,能为离子吸附型稀土成矿提供充足的物质来源,具有可观的离子吸附型稀土成矿潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号