首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data.  相似文献   

2.
Cassini RADAR topography data are used to evaluate Titan’s hypsometric profile, and to make comparisons with other planetary bodies. Titan’s hypsogram is unimodal and strikingly narrow compared with the terrestrial planets. To investigate topographic extremes, a novel variant on the classic hypsogram is introduced, with a logarithmic abscissa to highlight mountainous terrain. In such a plot, the top of the terrestrial hypsogram is quite distinct from those of Mars and Venus due to the ‘glacial buzz-saw’ that clips terrestrial topography above the snowline. In contrast to the positive skew seen in other hypsograms, with a long tail of positive relief due to mountains, there is an indication (weak, given the limited data for Titan so far) that the Titan hypsogram appears slightly negatively skewed, suggesting a significant population of unfilled depressions. Limited data permit only a simplistic comparison of Titan topography with other icy satellites but we find that the standard deviation of terrain height (albeit at different scales) is similar to those of Ganymede and Europa.  相似文献   

3.
The main goal of the gamma-ray spectrometer(GRS) onboard Chang'E1(CE-1) is to acquire global maps of elemental abundances and their distributions on the moon,since such maps will significantly improve our understanding of lunar formation and evolution.To derive the elemental maps and enable research on lunar formation and evolution,raw data that are received directly from the spacecraft must be converted into time series corrected gamma-ray spectra.The data correction procedures for the CE-1 GRS time series...  相似文献   

4.
利用脉冲星钟模型能高精度地预报脉冲星脉冲到达太阳系质心的时间。基于脉冲星时、空参考架可实现各类空间飞行器的自主导航。讨论了脉冲星钟的模型和脉冲星导航系统的框架结构,描述了脉冲星导航的基本原理和算法。指出脉冲星导航系统对脉冲星脉冲到达探测器时刻的测量精度,是决定空间飞行器位置解算精度的关键因素。脉冲星导航观测采用的原子钟如果足够稳定,则空间飞行器位置的解算方法可以简化。在脉冲星导航系统计时观测精度达到或优于几十微秒量级时,脉冲星视差、相对论效应的影响是不可忽略的。对脉冲星导航系统开发设计中的关键技术和进一步研究的主要问题进行了初步分析和讨论。  相似文献   

5.
The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.  相似文献   

6.
We made a detailed geomorphologic map of the Menrva region of Titan, using Cassini RADAR data as our map base. Using similar techniques and approaches that were applied to mapping Magellan radar images of Venus, and earlier, more generalized Titan maps, we were able to define and characterize 10 radar morphologic units, along with inferred dunes and fluvial channels, from the RADAR data. Structural features, such as scarps, ridges, and lineaments were also identified. Using principles of superposition, cross-cutting, and embayment relations we created a sequence of map units for this region. We interpret Menrva to be a 440 km wide degraded impact basin, in agreement with earlier studies by Elachi et al. (Elachi, C. et al. [2006]. Nature 441, 709-713) and Wood et al. (Wood, C.A., Lorenz, R., Kirk, R., Lopes, R., Mitchell, K., Stofan, E., and the Cassini RADAR Team [2010]. Icarus 206, 334-344), and identify it as the oldest feature in the map region. Exogenic processes including hydrocarbon fluid channelization forming the Elivagar Flumina channel network and dune fields resulting from aeolian activity are the current geologic processes dominating our map area, and these processes have contributed to the erosion of the crater’s ejecta field. There is evidence of multiple episodes of channel formation, erosion and burial by aeolian deposits, as observed elsewhere on Titan by e.g., Barnes et al. (Barnes, J.W. et al. [2005]. Icarus 195, 400-414). Channel outflow regions have morphologies suggestive of streams formed by flash floods, and dune fields are small and restricted rather than forming large dune seas, consistent with a desert-like environment for this region with low supply of hydrocarbon particles, also consistent with other studies by e.g., Lorenz et al. (Lorenz, R.D. et al. [2008a]. Planet. Space Sci. 56, 1132-1144). There is no evidence of cryovolcanism or non-impact-related tectonic activity in the Menrva region, although this region is too small to infer anything about the roles of these processes elsewhere on Titan. This work suggests detailed geomorphologic mapping can confidently be applied to Cassini RADAR data, and we suggest that more extensive mapping should be done using RADAR, ISS, and VIMS data geographically distributed across Titan to assess its usefulness for a future combined RADAR-ISS-VIMS-based global geologic map.  相似文献   

7.
A pulsar has the very stable rotation and can be used as the time standard. The astrometric parameters and astrophysical parameters of many pulsars, such as the spatial position, proper motion, distance, rotation period and its derivative, etc., can be all accurately determined. Since the pulsar can provide the time signal and the coordinates of its spatial position simultaneously, the pulsar navigation system installed on a spacecraft enables the autonomous navigation of the spacecraft to be realized. Firstly, the position of the spacecraft is predicted based on the equation of orbit dynamics of the spacecraft and then the Kalman filtering is applied to calculating the estimation error of the spacecraft position through the difference between the pulse arrival time observed on the spacecraft and the predicted pulse arrival time, thereby modifying the position of the spacecraft. Finally, the effects of the initial error, measuring accuracy of the pulse arrival time and number of pulsars on the navigation accuracy are analyzed.  相似文献   

8.
A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan.SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage.We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.  相似文献   

9.
脉冲星自转非常稳定,可以用作时间标准,许多脉冲星的空间位置、自行、距离、自转周期及其导数等天体测量参数和天体物理参数都能被精确测定.由于脉冲星能够同时提供时间信号和空间位置坐标,安装在航天器上的脉冲星导航系统能够实现航天器的自主导航.首先根据航天器轨道动力学方程预测航天器的位置,再通过航天器上观测的脉冲到达时间和预报的脉冲到达时间之差,应用Kalman滤波计算航天器位置估计的误差,从而对航天器的位置进行修正.最后,分析初始误差、脉冲到达时间测量精度、脉冲星个数对导航精度的影响.  相似文献   

10.
用脉冲星钟作航天器时间标准   总被引:3,自引:0,他引:3  
在介绍参考坐标系和时间标准的基础上,讨论了用脉冲星为航天器导航的时间标准问题。利用X射线脉冲星实现航天器自主导航,星载钟的任何误差都会直接影响航天器位置测量。脉冲星钟具有较高的长期频率稳定度,适合用作各类航天器的时间标准。重点讨论了时间标准误差对航天器定位的影响;给出了用脉冲星钟作航天器时间标准的物理实现方法。  相似文献   

11.
The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section σ0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties.  相似文献   

12.
Abstract— The global high‐resolution imaging of asteroid 433 Eros by the Near‐Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft has made it possible to develop the first comprehensive picture of the geology of a small S‐type asteroid. Eros displays a variety of surface features, and evidence of a substantial regolith. Large scale facets, grooves, and ridges indicate the presence of at least one global planar structure. Directional and superposition relations of smaller structural features suggest that fracturing has occurred throughout the object. As with other small objects, impact craters dominate the overall shape as well as the small‐scale topography of Eros. Depth/diameter ratios of craters on Eros average ~0.13, but the freshest craters approach lunar values of ~0.2. Ejecta block production from craters is highly variable; the majority of large blocks appear to have originated from one 7.6 km crater (Shoemaker). The interior morphology of craters does not reveal the influence of discrete mechanical boundaries at depth in the manner of craters formed on lunar mare regolith and on some parts of Phobos. This lack of mechanical boundaries, and the abundant evidence of regolith in nearly every high‐resolution image, suggests a gradation in the porosity and fracturing with depth. The density of small craters is deficient at sizes below ~200 m relative to predicted slopes of empirical saturation. This characteristic, which is also found on parts of Phobos and lunar highland areas, probably results from the efficient obliteration of small craters on a body with significant topographic slopes and a thick regolith. Eros displays a variety of regolith features, such as debris aprons, fine‐grained “ponded” deposits, talus cones, and bright and dark streamers on steep slopes indicative of efficient downslope movement of regolith. These processes serve to mix materials in the upper loose fragmental portion of the asteroid (regolith). In the instance of “ponded” materials and crater wall deposits, there is evidence of processes that segregate finer materials into discrete deposits. The NEAR observations have shown us that surface processes on small asteroids can be very complex and result in a wide variety of morphologic features and landforms that today seem exotic. Future missions to comets and asteroids will surely reveal still as yet unseen processes as well as give context to those discovered by the NEAR Shoemaker spacecraft.  相似文献   

13.
Carbon compounds are ubiquitous in the solar system but are challenging to study using remote sensing due to the mostly bland spectral nature of these species in the traditional visible‐near‐infrared regime. In contrast, carbonaceous species are spectrally active in the ultraviolet (UV) but have largely not been considered for studies of solar system surfaces. We compile existing UV data of carbon compounds—well‐studied in contemplation of the ISM extinction “bump”—to review trends in UV spectral behavior. Thermal and/or irradiation processing of carbon species results in the loss of H and ultimately graphitization. Graphitization is shown to produce distinct spectral features in the UV, which are predicted to be more readily detected in the inner solar system, whereas outer solar system bodies are expected to be more dominated by less‐processed carbon compounds. Throughout the solar system, we can thus consider a “carbon continuum” where the more evolved carbons in the inner solar system exhibit a stronger UV absorption feature and associated far‐UV rise. We compare carbon spectral models with spacecraft data of two bodies from different points in the carbon continuum, Ceres and Iapetus. We find that the apparent strong far‐UV upturn in Ceres’ spectrum (in the 150–200 nm range) can be explained by an anthracite‐like species while Iapetus’ spectrum features a reflectance peak consistent with polycyclic aromatic hydrocarbons. We make generalized predictions for UV spectral characteristics in other regions of the solar system.  相似文献   

14.
To approach basic scientific questions on the origin and evolution of planetary bodies such as planets, their satellites and asteroids, one needs data on their chemical composition. The measurements of gamma-rays, X-rays and neutrons emitted from their surface materials provide information on abundances of major elements and naturally radioactive gamma-ray emitters. Neutron spectroscopy can provide sensitive maps of hydrogen-and carbon-containing compounds, even if buried, and can uniquely identify layers of carbon-dioxide frost. Nuclear spectroscopy, as a means of compositional analysis, has been applied via orbital and lander spacecraft to extrater-restrial planetary bodies:the Moon, Venus, Mars, Mercury and asteroids. The knowledge of their chemical abundances, especially concerning the Moon and Mars, has greatly increased in recent years. This paper describes the principle of nuclear spectroscopy, nuclear planetary instruments carried on planetary missions so far, and the nature of observational results and findings of the Moon and Mars, recently obtained by nuclear spectroscopy.  相似文献   

15.
As a key technique in deep space navigation, radio interferometry can be used to determine the accurate location of a spacecraft in the plane-of-sky by measuring its signal propagation time delay between two remote stations. To improve the measurement accuracy, differential phase delay without phase ambiguity is usually desired. Aiming at the difficulties of resolving phase ambiguity with few stations and narrowband downlink signals, a new method is proposed in this work by taking advantage of the Earth rotation. The high accurate differential phase delay between the spacecraft and a calibrator can be achieved not only in the in-beam observation mode but also in the out-of-beam observation mode. In this paper we firstly built the model of phase ambiguity resolution. Then, main measurement errors of the model are analyzed, which is followed by tests and validations of the model and method using the tracking data of the Cassini mission and Chang'E-3 mission. The results show that the phase ambiguities can be correctly resolved to generate a 10-picosecond level accuracy differential phase delay. Angular measurement accuracy of the Cassini reaches the milli-arc-second level, and the relative position accuracy between the Chang'E-3 rover and lander reaches the meter level.  相似文献   

16.
Fast Lyapunov Indicator (FLI) maps are presented as a tool for solving spacecraft preliminary trajectory design problems in multi-body environments with long-term stability requirements. In particular, the FLI maps are shown to provide a global overview of the dynamics in the restricted three-body problem that can guide mission designers in selecting long-term stable regions of phase space which are inherently more robust to model parameter perturbations. The FLI is also shown to numerically detect the normally hyperbolic manifolds associated with unstable periodic orbits. These, in turn, provide a global map of the principal heteroclinic connections between the various resonance regions which form the basic backbone of dynamical transfers design. Examples of maps and transfers are provided in the restricted three-body problem modeling the Jupiter–Europa system.  相似文献   

17.
18.
This paper examines the effectiveness of small star trackers for orbital estimation. Autonomous optical navigation has been used for some time to provide local estimates of orbital parameters during close approach to celestial bodies. These techniques have been used extensively on spacecraft dating back to the Voyager missions, but often rely on long exposures and large instrument apertures. Using a hyperbolic Mars approach as a reference mission, we present an EKF-based navigation filter suitable for nanosatellite missions. Observations of Mars and its moons allow the estimator to correct initial errors in both position and velocity. Our results show that nanosatellite-class star trackers can produce good quality navigation solutions with low position (\(<300\,\text {m}\)) and velocity (\(<0.15\,\text {m/s}\)) errors as the spacecraft approaches periapse.  相似文献   

19.
To evaluate the feasibility of measuring differences in bulk composition among carbonaceous meteorite parent bodies from an asteroid or comet orbiter, we present the results of a performance simulation of an orbital gamma‐ray spectroscopy (GRS) experiment in a Dawn‐like orbit around spherical model asteroids with a range of carbonaceous compositions. The orbital altitude was held equal to the asteroid radius for 4.5 months. Both the asteroid gamma‐ray spectrum and the spacecraft background flux were calculated using the MCNPX Monte‐Carlo code. GRS is sensitive to depths below the optical surface (to ≈20–50 cm depth depending on material density). This technique can therefore measure underlying compositions beneath a sulfur‐depleted (e.g., Nittler et al. 2001 ) or desiccated surface layer. We find that 3σ uncertainties of under 1 wt% are achievable for H, C, O, Si, S, Fe, and Cl for five carbonaceous meteorite compositions using the heritage Mars Odyssey GRS design in a spacecraft‐deck‐mounted configuration at the Odyssey end‐of‐mission energy resolution, FWHM = 5.7 keV at 1332 keV. The calculated compositional uncertainties are smaller than the compositional differences between carbonaceous chondrite subclasses.  相似文献   

20.
Images of Mars in the visible to near-infrared acquired from 1996 to 2005 using the Hubble Space Telescope WFPC2 have been used to model the martian surface photometric function at 502, 673, 953, and 1042 nm. These data range in spatial resolution from 12 to 70 km/pixel at the sub-Earth point, and in phase angle coverage from 0.34° to 40.5°. The WFPC2 images have been calibrated to radiance factor or I/F and projected to a cylindrical map for coregistration and comparison to similarly mapped spacecraft data sets of albedo, topography, thermal inertia, composition, and geology. We modeled the observed I/F as a function of phase angle using Minnaert, Lambert, lunar-Lambert, and Hapke photometric functions for numerous regions of interest binned into albedo units defined by Viking and TES albedo maps, and thermal-inertia units defined by TES thermal-inertia maps. Visibly opaque water-ice clouds and data acquired under high dust opacity conditions were excluded from the analysis. Our modeling suggests that under average to low atmospheric dust opacity conditions and over this range of phase angles, the photometric properties of the martian surface at 502, 673, 953, and 1042 nm are best modeled by lunar-Lambert functions with parameters derived for three surface units defined by low, moderate, and high TES bolometric albedos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号