首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma.  相似文献   

2.
Abstract— This study provides a complete data set of all five noble gases for bulk samples and mineral separates from three Martian shergottites: Shergotty (bulk, pyroxene, maskelynite), Zagami (bulk, pyroxene, maskelynite), and Elephant Moraine (EET) A79001, lithology A (bulk, pyroxene). We also give a compilation of all noble gas and nitrogen studies performed on these meteorites. Our mean values for cosmic‐ray exposure ages from 3He, 21Ne, and 38Ar are 2.48 Myr for Shergotty, 2.73 Myr for Zagami, and 0.65 Myr for EETA79001 lith. A. Serious loss of radiogenic 4He due to shock is observed. Cosmogenic neon results for bulk samples from 13 Martian meteorites (new data and literature data) are used in addition to the mineral separates of this study in a new approach to explore evidence of solar cosmic‐ray effects. While a contribution of this low‐energy irradiation is strongly indicated for all of the shergottites, spallation Ne in Chassigny, Allan Hills (ALH) 84001, and the nakhlites is fully explained by galactic cosmic‐ray spallation. Implanted Martian atmospheric gases are present in all mineral separates and the thermal release indicates a near‐surface siting. We derive an estimate for the 40Ar/36Ar ratio of the Martian interior component by subtracting from measured Ar in the (K‐poor) pyroxenes the (small) radiogenic component as well as the implanted atmospheric component as indicated from 129Xe, * excesses. Unless compromised by the presence of additional components, a high ratio of ~2000 is indicated for Martian interior argon, similar to that in the Martian atmosphere. Since much lower ratios have been inferred for Chassigny and ALH 84001, the result may indicate spatial and/or temporal variations of 40Ar/36Ar in the Martian mantle.  相似文献   

3.
We investigated exterior and interior subsamples from the Martian shergottite meteorites Allan Hills (ALH) A77005 and Roberts Massif (RBT) 04261 for secondary minerals, oxygen isotopes, Ar‐Ar, and noble gas signatures. Electron microprobe investigations revealed that RBT 04261 does not contain any visible alteration even in its most exterior fractures, whereas fracture fillings in ALHA77005 penetrate into the meteorite up to 300 μm, beyond which the fractures are devoid of secondary minerals. Light noble gases seem to be almost unaffected by terrestrially induced alteration in both meteorites. Thus, a shock metamorphic overprint of 30–35 GPa can be deduced from the helium measurements in RBT 04261. Oxygen isotopes also seem unaffected by terrestrially weathering and variations can easily be reconciled with the differences in modal mineralogy of the exterior and interior subsamples. The measurements on irradiated samples (Ar‐Ar) showed a clear Martian atmospheric contribution in ALHA77005, but this is less apparent in our sample of RBT 04261. Exterior and interior subsamples show slight differences in apparent ages, but the overall results are very similar between the two. In contrast, krypton and xenon are severely affected by terrestrial contamination, demonstrating the ubiquitous presence of elementally fractionated air in RBT 04261. Although seemingly contradictory, our results indicate that RBT 04261 was more affected by contamination than ALHA77005. We conclude that irrespective of on which planet the alteration occurred, exposure of Martian rocks to atmosphere (or brine) introduces noble gases with signatures elementally fractionated relative to the respective atmospheric composition into the rock, and relationships of that process with oxygen isotopes or mineralogical observations are not straightforward.  相似文献   

4.
Abstract– We measured the concentrations and isotopic ratios of the cosmogenic noble gases He, Ne, and Ar in the very large iron meteorite Xinjiang (IIIE). The 3He and 4He data indicate that a significant portion of the cosmogenic produced helium has been lost via diffusion or in a recent impact event. High 22Ne/21Ne ratios indicate that contributions to the cosmogenic 21Ne from sulfur and/or phosphorous are significant. By combining the measured nuclide concentrations with model calculations for iron meteorites we were able to determine the preatmospheric diameter of Xinjiang to 260–320 cm, which corresponds to a total mass of about 70–135 tons. The cosmic‐ray exposure age of Xinjiang is 62 ± 16 Ma, i.e., relatively short compared to most of the other iron meteorites. With the current database we cannot firmly determine whether Xinjiang experienced a complex irradiation history. The finding of 3He and 4He losses might argue for a recent impact event and therefore for a complex exposure.  相似文献   

5.
No meteorites from Mercury and Venus have been conclusively identified so far. In this study, we develop an original approach based on extensive Monte Carlo simulations and diffusion models to explore the radiogenic argon (40Ar*) and helium (4He*) loss behavior and the range of 40Ar/39Ar and (U‐Th)/He age signatures expected for a range of crystals if meteorites from these planets were ever to be found. We show that we can accurately date the crystallization age of a meteorite from both Mercury and Venus using the 40Ar/39Ar technique on clinopyroxene (± orthopyroxene) and that its 40Ar/39Ar age should match the Pb‐Pb age. At the surface of Mercury, phases like albite and anorthite will exhibit a complete range of 40Ar* loss ranging from 0% to 100%, whereas merrillite and apatite will show 100% 4He* loss. By measuring the crystal size and diffusion parameters of a series of plagioclase crystals, one can inverse the 40Ar* loss value to estimate the maximum temperature experienced by a rock, and narrow down the possible pre‐ejection location of the meteorite at the surface of Mercury. At the surface of Venus, plagioclase and phosphate phases will only record the age of ejection. The (U‐Th)/He systematics of merrillite and apatite will be, respectively, moderately and strongly affected by 4He* loss during the transit of the meteorite from its host planet to Earth. Finally, meteorites from Mercury or Venus will each have their own 40Ar/39Ar and (U‐Th)/He isotopic age and 38Arc cosmic ray exposure age signatures over a series of different crystal types, allowing to unambiguously recognize a meteorite for any of these two planets using radiogenic and cosmogenic noble gases.  相似文献   

6.
Abstract— The lherzolitic Martian meteorite Northwest Africa (NWA) 1950 consists of two distinct zones: 1) low‐Ca pyroxene poikilically enclosing cumulate olivine (Fo70–75) and chromite, and 2) areas interstitial to the oikocrysts comprised of maskelynite, low‐ and high‐Ca pyroxene, cumulate olivine (Fo68–71) and chromite. Shock metamorphic effects, most likely associated with ejection from the Martian subsurface by large‐scale impact, include mechanical deformation of host rock olivine and pyroxene, transformation of plagioclase to maskelynite, and localized melting (pockets and veins). These shock effects indicate that NWA 1950 experienced an equilibration shock pressure of 35–45 GPa. Large (millimeter‐size) melt pockets have crystallized magnesian olivine (Fo78–87) and chromite, embedded in an Fe‐rich, Al‐poor basaltic to picro‐basaltic glass. Within the melt pockets strong thermal gradients (minimum 1 °C/μm) existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites, resulting in gradational textures of olivine and chromite. Dendritic and skeletal olivine, crystallized in the melt pocket center, has a nucleation density (1.0 × 103 crystals/mm2) that is two orders of magnitude lower than olivine euhedra near the melt margin (1.6 × 105 crystals/mm2). Based on petrography and minor element abundances, melt pocket formation occurred by in situ melting of host rock constituents by shock, as opposed to melt injected into the lherzolitic target. Despite a common origin, NWA 1950 is shocked to a lesser extent compared to Allan Hills (ALH) 77005 (45–55 GPa). Assuming ejection in a single shock event by spallation, this places NWA 1950 near to ALH 77005, but at a shallower depth within the Martian subsurface. Extensive shock melt networks, the interconnectivity between melt pockets, and the ubiquitous presence of highly vesiculated plagioclase glass in ALH 77005 suggests that this meteorite may be transitional between discreet shock melting and bulk rock melting.  相似文献   

7.
Abstract— Several experimentally and naturally shocked silicate samples were analyzed for noble gas contents to further characterize the phenomenon by which ambient gases can be strongly implanted into silicates by shock and to evaluate the possible importance of this process in capturing planetary atmospheres in naturally shocked samples. Gas implantation efficiency is apparently mineral independent, as mono-mineralic powders of oligoclase, labradorite, and diopside and a powdered basalt shocked to 20 GPa show similar efficiencies. The retentivity of shock-implanted gas during stepwise heating in the laboratory is defined in terms of two parameters: activation energy for diffusion as determined from Arrhenius plots, and the extraction temperature at which 50% of the gas is released, both of which correlate with shock pressure. These gas diffusion parameters are essentially identical for radiogenic 40Ar and shock-implanted 40Ar in oligoclase and labradorite shocked to 20 GPa, suggesting that the two 40Ar components occupy analogous lattice sites. Our experiments indicate that gas implantation occurs through an increasing production of microcracks/defects in the lattice with increasing shock pressure. The ease of diffusive loss of implanted gas is controlled by the degree of annealing of these microcracks/defects. Identification of a shock-implanted component requires relatively large concentrations of implanted gas which is strongly retained (i.e., moderate activation energy) in order to separate implanted gas from surface adsorbed gases. Literature data on shocked terrestrial samples indicate only weak evidence for shock-implanted gases, with an upper limit for 40Ar of ~ 10?6 cm3STP/g. New analyses of shocked samples from the Wabar Crater indicate the presence of shock-implanted Ar, having concentrations (~ 10?4 cm3STP/g) and activation energies for diffusive loss which are essentially that expected from experimental studies. Lack of sufficient target porosity or the presence of ground water may explain the sparse evidence for shock-implanted gas at other terrestrial craters. Although Wabar Crater may represent an unusually favorable environment on Earth for shock-implanting gases, surfaces of other planetary bodies, such as Mars, may frequently provide such environments. Analyses of returned samples from old Martian terraines may document temporal changes in earlier atmospheric composition.  相似文献   

8.
Abstract— Chemical and mineral analysis of the Bhawad chondrite, which fell in Rajasthan in 2002, suggest that this stone belongs to LL6 group of chondrites. Based on helium, neon, and argon isotopes, it has a cosmic ray exposure age of 16.3 Ma. The track density in the olivines shows a narrow range of 1.7–6.8 times 106/cm2. The 22Na/26Al ratio of 1.13 is about 25% lower than the solar cycle average value of about 1.5, but is consistent with irradiation of the meteoroid to modulated galactic cosmic ray fluxes as expected for a fall around the solar maximum. The cosmogenic records indicate a pre‐atmospheric radius of about 7.5 cm. Based on U/Th‐4He and K‐40Ar, the gas retention ages are low (about 1.1 Ga), indicating a major thermal event or shock event that lead to the complete loss of radiogenic 4He and 40Ar and the partial loss of radiogenic 129Xe and fission Xe from 244Pu.  相似文献   

9.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

10.
Abstract– Bunburra Rockhole is the first meteorite fall photographed and recovered by the Desert Fireball Network in Australia. It is classified as an ungrouped achondrite similar in mineralogical and chemical composition to eucrites, but it has a distinct oxygen isotope composition. The question is if achondrites like Bunburra Rockhole originate from the same parent body as the howardite‐eucrite‐diogenite (HED) meteorites or from several separate, differentiated parent bodies. To address this question, we measured cosmogenic radionuclides and noble gases in the Bunburra Rockhole achondrite. The short‐lived radionuclides 22Na and 54Mn confirm that Bunburra Rockhole is a recent fall. The concentrations of 10Be, 26Al and 36Cl as well as the 22Ne/21Ne ratio indicate that Bunburra Rockhole was a relatively small object (R approximately 15 cm) in space, consistent with the photographic fireball observations. The cosmogenic 38Ar concentration yields a cosmic‐ray exposure (CRE) age of 22 ± 3 Myr, whereas 21Ne and 3He yield approximately 30% and approximately 60% lower ages, respectively, due to loss of cosmogenic He and Ne, mainly from plagioclase. With a CRE age of 22 Myr, Bunburra Rockhole is the first anomalous eucrite that overlaps with the main CRE peak of the HED meteorites. The radiogenic K‐Ar age of 4.1 Gyr is consistent with the U‐Pb age, while the young U,Th‐He age of approximately 1.4 Gyr indicates that Bunburra Rockhole lost radiogenic 4He more recently.  相似文献   

11.
The isotopic composition of the noble gases of the new Martian meteorite, the Dhofar 019 shergottite, found in the desert in the territory of the Sultanate of Oman on January 24, 2001, was investigated. Stepwise thermal annealing with isotopic analysis of each of the noble-gas temperature fractions was employed to determine the component composition. The concentration of the trapped noble gases in the new Martian meteorite Dhofar 019 is relatively high, although it lies within the range of concentrations in known SNC meteorites. A characteristic feature of all the trapped noble gases is the presence of two main components: a low-temperature, probably terrestrial atmospheric, component, trapped during the weathering of the meteorite on Earth, and a high-temperature trapped Martian component. Owing to the different ratios of the quantities of the two components, the trapped neon, argon, krypton, and xenon differ markedly in the kinetics of their release. The isotopic composition of the noble gases varies accordingly. The trapped xenon was found to contain two Martian components. One of them, with typical ratios of 129Xe/132Xe and 132Xe/84Kr, is representative of xenon and krypton of the Martian atmosphere; the other, of gases of the Martian mantle. Variations of the isotopic compositions of helium, neon, and argon (and also, to a lesser extent, of krypton and xenon) during the thermal annealing of the Dhofar 019 meteorite clearly point to a large proportion of cosmogenic as well as trapped components. The concentration of cosmogenic neon and argon in the meteorite is unusually high. This corresponds to a maximum exposure age among other SNC meteorites: 20 million years. Estimates of the potassium–argon age (gas-retention age) yielded the figure of 560 million years, which is within the range of values obtained for SNC meteorites by other authors, who used the rubidium–strontium and the potassium–argon technique.  相似文献   

12.
Abstract— The Campos Sales meteorite fell close to the town of Campos Sales in the northeastern Brazilian state of Ceará (7°2′ S, 40°10′ W) on 1991 January 31 at 10:00 P.M. (local time). Several fragments were recovered from an area estimated to be 1 × 3 km. The stone is an ordinary L5 chondrite (Fa25.0 and FS21.6) and is lightly shocked (S1). Metal phases present are kamacite, tetrataenite, and antitaenite. Noble gases He, Ne, Ar, Kr, and Xe have been analyzed in two bulk samples of Campos Sales. All exposure ages based on determination of cosmogenic 3He, 21Ne, 38Ar, 83Kr, and 126Xe abundances and on the cosmogenic 81Kr/83Kr ratio agree well, which suggests no gas loss during cosmic-ray exposure. The cosmic-ray exposure age is 23.3 ± 1.0 Ma, which falls in the range observed for L5 chondrites (20–30 Ma). The gas-retention ages indicate He loss that must have occurred prior to or during ejection from the L-chondrite parent body.  相似文献   

13.
Abstract– To better determine the effects of impact‐related processes on radiometric chronometers in meteorites, we undertook an isotopic study of experimentally shocked and heated samples of lunar basalt 10017. Shock experiments at 55 GPa were completed on one subsample, and a second subsample was heated in an evacuated quartz tube at 1000 °C for 170 h. A third subsample was maintained as a control. Samarium‐neodymium, Rb‐Sr, 238U‐206Pb, and 206Pb‐207Pb isotopic analyses were completed on mineral fractions (leached and unleached), leached whole rocks, and complementary acid leachates. Disturbance in the shocked and heated samples was evaluated through comparison of their isochron diagrams with those of the control sample. The Sm‐Nd isotope system was the least disturbed, the Rb‐Sr isotope system was more disturbed, and the 238U‐206Pb and 206Pb‐207Pb isotope systems were the most disturbed by shock and annealing. Samples that experienced extended heating demonstrated greater isotopic disturbances than shocked samples. In some cases, the true crystallization age was preserved, and in others, age information was degraded or destroyed. In no case did the experiments generate isochrons that maintained linearity while being rotated or completely reset. Although our results show that neither experimental shock nor thermal metamorphism alone can account for the discordant ages represented by different isotope systems in some Martian meteorites, we postulate that shock metamorphism may render a meteorite more susceptible than its unshocked counterpart to subsequent disturbance during extended impact‐related heating or aqueous alteration. The combination of these processes may result in the disparate chronometric information preserved in some meteorites.  相似文献   

14.
We performed shock recovery experiments on an olivine‐phyric basalt at shock pressures of 22.2–48.5 GPa to compare with shock features in Martian meteorites (RBT 04261 and NWA 1950). Highly shocked olivine in the recovered basalt at 39.5 and 48.5 GPa shows shock‐induced planar deformation features (PDFs) composed of abundant streaks of defects. Similar PDFs were observed in olivine in RBT 04261 and NWA 1950 while those in NWA 1950 were composed of amorphous lamellae. Based on the present results and previous studies, the width and the abundance of lamellar fine‐structures increased with raising shock pressure. Therefore, these features could be used as shock pressure indicators while the estimated pressures may be lower limits due to no information of temperature dependence. For Martian meteorites that experienced heavy shocks, the minimum peak shock pressures of RBT 04261 and NWA 1950 are estimated to be 39.5–48.5 GPa and 48.5–56 GPa, respectively, which are found consistent with those estimated by postshock temperatures expected by the presence of brown olivine. We also investigated shock‐recovered basalts preheated at 750 and 800 °C in order to check the temperature effects on shock features. The results indicate a reduction in vitrifying pressure of plagioclase and a pressure increase for PDFs formation in olivine. Further temperature‐controlled shock recovery experiments will provide us better constraints to understand and to characterize various features found in natural shock events.  相似文献   

15.
Neon produced by solar cosmic rays in ordinary chondrites   总被引:1,自引:0,他引:1       下载免费PDF全文
Solar‐cosmic‐ray‐produced Ne (SCR‐Ne), in the form of low cosmogenic 21Ne/22Ne ratios (21Ne/22Necos <0.8), is more likely to be found in rare meteorite classes, like Martian meteorites, than in ordinary chondrites. This may be the result of a sampling bias: SCR‐Ne is better preserved in meteorites with small preatmospheric radii and these specimens are often only studied if they belong to unusual or rare classes. We measured He and Ne isotopic concentrations and nuclear tracks in 25 small unpaired ordinary chondrites from Oman. Most chondrites have been intensively heated during atmospheric entry as evidenced by the disturbed track records, the low 3He/21Ne ratios, the low 4He concentrations, and the high peak release temperatures. Concentration depth profiles indicate significant degassing; however, the Ne isotopes are mainly undisturbed. Remarkably, six chondrites have low 21Ne/22Necos in the range 0.711–0.805. Using a new physical model for the calculation of SCR production rates, we show that four of the chondrites contain up to ~20% of SCR‐Ne; they are analyzed in terms of preatmospheric sizes, cosmic ray exposure ages, mass ablation losses, and orbits. We conclude that SCR‐Ne is preserved, regardless of the meteorite class, in specimens with small preatmospheric radii. Sampling bias explains the predominance of SCR‐Ne in rare meteorites, although we cannot exclude that SCR‐Ne is more common in Martian meteorites than it is in small ordinary chondrites.  相似文献   

16.
Data on the isotopic abundances and ratios of light rare gases (He and Ne) in 600 ordinary chondrites are analyzed. The ratio of cosmogenic isotopes (3He/21Ne) c in 20% of the ordinary chondrites has been found to lie well below the correlation line that represents the dependence of (3He/21Ne) c on (22Ne/21Ne) c . This effect shows up most clearly in 4He r -chondrites, particularly in meteorites with diffusion losses of radiogenic 21Ne c , and is most likely attributable to the predominant (compared to 3He c ) diffusion losses of cosmogenic 3Hecthrough the solar heating of meteorites in orbits with small perihelion distances. This effect is enhanced by periodic variations in orbital parameters (including the perihelion distance) of meteorites throughout their exposure histories. Thermoluminescence data for ordinary chondrites confirm this scenario. The (3He/21Ne) c ratio for 15% of the chondrites was significantly overestimated, which may stem from the fact that such meteorites were heavily shielded in preatmospheric bodies.  相似文献   

17.
Abstract— Argon-isotopic abundances were measured in neutron-irradiated samples of Martian meteorites Chassigny, Allan Hills (ALH) 84001, ALH 77005, Elephant Moraine (EET) 79001, Yamato (Y) 793605, Shergotty, Zagami, and Queen Alexandra Range (QUE) 94201, and in unirradiated samples of ALH 77005. Chassigny gives a 39Ar-40Ar age of 1.32 ± 0.07 Ga, which is similar to radiometric ages of the nakhlites. Argon-39-Argon-40 data for ALH 84001 indicate ages between 3.9 and 4.3 Ga. A more precise definition of this age requires detailed characterization of the multiple trapped Ar components in ALH 84001 and of 39Ar recoil distribution. All six shergottite samples show apparent 39Ar-40Ar ages substantially older than the ~165–200 Ma range in ages given by other isotope dating techniques. Shergottites appear to contain ubiquitous Ar components acquired from the Martian atmosphere, the Martian mantle, and commonly terrestrial atmospheric contamination. Zagami feldspar also suggests inherited radiogenic 40Ar. These data analyses indicate that the recent Martian atmospheric component trapped in shergottites has a 40Ar/36Ar ratio possibly as low as ~1750 and no greater than ~1900. These ratios are less than the value of 3000 ± 500 reported by Viking. The 40Ar/36Ar ratio for the Martian mantle component is probably <500 but is poorly constrained. The correlation between trapped 40Ar/36Ar and 129Xe/132Xe ratios in shergottite impact glasses and unirradiated samples of ALH 77005 shows considerable scatter and suggests that the 36Ar/132Xe ratio in the Martian components may vary. Resolution of Martian atmospheric 40Ar/36Ar ratio at different time periods (i.e., at ~4.0 and 0.2 Ga) is also difficult without an understanding of the composition of various trapped components.  相似文献   

18.
Abstract— Radiometric age dating of Martian rocks and surfaces at known locations for which crater densities can be determined is highly desirable in order to fully understand Martian history. Performing K‐Ar age dating of igneous rocks on Mars by robots, however, presents technical challenges. Some of these challenges can be defined by examining Ar‐Ar data acquired on Martian meteorites, and others can be evaluated through numerical modeling of simulated K‐Ar isochrons like those that would be acquired robotically on Martian rocks. Excess 40Ar is present in all shergottites. Thus for Martian rocks, the slopes of K‐Ar isochrons must be determined to reasonable precision in order to calculate reliable ages. Model simulations of possible isochrons give an indication of some requirements in order to define a precise rock age: Issues addressed here are: how many K‐Ar analyses should be made of rocks thought to have the same age; what range of K concentrations should these analyzed samples have; and what analytical uncertainty in K‐Ar measurements is desirable. Meteorite data also are used to determine the D/a2 diffusion parameters for Ar in plagioclase and pyroxene separates of several shergottites and nakhlites. These data indicate the required temperatures and times for heating similar Martian rocks in order to extract Ar. Quantitatively extracting radiogenic 40Ar could be difficult, and degassing cosmogenic Ar from mafic phases even more so. Considering all these factors, robotic K‐Ar dating of Martian rocks may be achievable, but will be challenging.  相似文献   

19.
Abstract By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (after plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is its non-chondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of 40Ar and 129Xe from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5–3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.  相似文献   

20.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号